Continuous#

Expand for references to pymc.Beta

Bernoulli Conversions

Generalising to multi-variant tests

Value Conversions

Hierarchical Partial Pooling / Approach

Bayes Factors and Marginal Likelihood / Computing Bayes factors / Sequential Monte Carlo

Hierarchical Binomial Model: Rat Tumor Example / Computing the Posterior using PyMC

Compound Steps in Sampling / Compound steps by default

Expand for references to pymc.Exponential

Bayesian Estimation Supersedes the T-Test / Example: Drug trial evaluation

Hierarchical Partial Pooling / Approach

A Primer on Bayesian Methods for Multilevel Modeling / Adding group-level predictors

A Primer on Bayesian Methods for Multilevel Modeling / Conventional approaches

A Primer on Bayesian Methods for Multilevel Modeling / Correlations among levels

A Primer on Bayesian Methods for Multilevel Modeling / Partial pooling model

A Primer on Bayesian Methods for Multilevel Modeling / Varying intercept and slope model

A Primer on Bayesian Methods for Multilevel Modeling / Varying intercept model

Splines / The model / Fit the model

Stochastic Volatility model / Build Model

GLM: Negative Binomial Regression / Negative Binomial Regression / Create GLM Model

Rolling Regression / Rolling regression

Lasso regression with block updating

Expand for references to pymc.Normal

Bayesian Additive Regression Trees: Introduction / Biking with BART

Bayesian Estimation Supersedes the T-Test / Example: Drug trial evaluation

LKJ Cholesky Covariance Priors for Multivariate Normal Models

Estimating parameters of a distribution from awkwardly binned data / Example 2: Parameter estimation with the other set of bins / Model specification

Estimating parameters of a distribution from awkwardly binned data / Example 6: A non-normal distribution / Model specification

Estimating parameters of a distribution from awkwardly binned data / Example 3: Parameter estimation with two bins together / Model Specification

Estimating parameters of a distribution from awkwardly binned data / Example 4: Parameter estimation with continuous and binned measures / Model Specification

Estimating parameters of a distribution from awkwardly binned data / Example 5: Hierarchical estimation / Model specification

Estimating parameters of a distribution from awkwardly binned data / Example 5: Hierarchical estimation / Inspect posterior

Estimating parameters of a distribution from awkwardly binned data / Example 1: Gaussian parameter estimation with one set of bins / Model specification

Using a “black box” likelihood function (numpy) / Comparison to equivalent PyMC distributions

Factor analysis / Model / Alternative parametrization

Factor analysis / Model / Direct implementation

NBA Foul Analysis with Item Response Theory / Item Response Model / PyMC implementation

Bayesian mediation analysis / Define the PyMC3 model and conduct inference

Bayesian mediation analysis / Double check with total effect only model

Does the effect of training upon muscularity decrease with age? / Define the PyMC model and conduct inference

A Primer on Bayesian Methods for Multilevel Modeling / Adding group-level predictors

A Primer on Bayesian Methods for Multilevel Modeling / Conventional approaches

A Primer on Bayesian Methods for Multilevel Modeling / Correlations among levels

A Primer on Bayesian Methods for Multilevel Modeling / Partial pooling model

A Primer on Bayesian Methods for Multilevel Modeling / Varying intercept and slope model

A Primer on Bayesian Methods for Multilevel Modeling / Varying intercept model

Probabilistic Matrix Factorization for Making Personalized Recommendations / Probabilistic Matrix Factorization

Model building and expansion for golf putting / A new model

Model building and expansion for golf putting / Logit model

Regression discontinuity design analysis / Sharp regression discontinuity model

A Hierarchical model for Rugby prediction / Building of the model

Splines / The model / Fit the model

How to wrap a JAX function for use in PyMC / Wrapping the JAX function in Aesara / Sampling with PyMC

Sampler Statistics / Multiple samplers

Sampler Statistics

Binomial regression / Binomial regression model

GLM: Hierarchical Linear Regression / Probabilistic Programming / Hierarchical Model

GLM: Hierarchical Linear Regression / Probabilistic Programming / Unpooled/non-hierarchical model

GLM: Negative Binomial Regression / Negative Binomial Regression / Create GLM Model

GLM: Poisson Regression / Poisson Regression / 1. Manual method, create design matrices and manually specify model

Rolling Regression / Rolling regression

Rolling Regression

Simpson’s paradox and mixed models / Model 1: Basic linear regression / Build model

Simpson’s paradox and mixed models / Model 2: Independent slopes and intercepts model

Simpson’s paradox and mixed models / Model 3: Hierarchical regression

Bayesian regression with truncated or censored data / Implementing truncated and censored regression models / Censored regression model

Bayesian regression with truncated or censored data / The problem that truncated or censored regression solves

Bayesian regression with truncated or censored data / Implementing truncated and censored regression models / Truncated regression model

General API quickstart / 3. Inference / 3.2 Analyze sampling results

General API quickstart / 2. Probability Distributions / Deterministic transforms

General API quickstart / 2. Probability Distributions / Initialize Random Variables

General API quickstart / 2. Probability Distributions / Lists of RVs / higher-dimensional RVs

General API quickstart / 1. Model creation

General API quickstart / 2. Probability Distributions / Observed Random Variables

General API quickstart / 4. Posterior Predictive Sampling

General API quickstart / 4.1 Predicting on hold-out data

General API quickstart / 3. Inference / 3.1 Sampling

General API quickstart / 2. Probability Distributions / Unobserved Random Variables

General API quickstart / 3. Inference / 3.3 Variational inference

Lasso regression with block updating

Gaussian Mixture Model

Work flow / Step 2: Define the fine model

Work flow / Step 3: Define a coarse model

Old good Gaussian fit

Censored Data Models / Censored data models / Model 1 - Imputed Censored Model of Censored Data

Censored Data Models / Censored data models / Model 2 - Unimputed Censored Model of Censored Data

Censored Data Models / Uncensored Model

Air passengers - Prophet-like model / Part 1: linear trend

Air passengers - Prophet-like model / Part 2: enter seasonality

Variational Inference: Bayesian Neural Networks / Bayesian Neural Networks in PyMC / Model specification