Skip to main content
Ctrl+K
Logo image Logo image

Site Navigation

  • Home
  • Examples
  • Learn
  • API
  • Community
  • Contributing

Site Navigation

  • Home
  • Examples
  • Learn
  • API
  • Community
  • Contributing

Categories

Tutorial
How-to
Explanation
Reference

Tags

  • ABC
  • BART
  • Bayes Factors
  • Bayesian workflow
  • CO2
  • JAX
  • ODE
  • PCA
  • PyTensor
  • Reinforcement Learning
  • SMC
  • Simpson's paradox
  • ab test
  • approximation
  • autoregressive
  • bayesian structural timeseries
  • binned data
  • binomial regression
  • calibration
  • case study
  • causal impact
  • causal inference
  • censored
  • classification
  • count data
  • counterfactuals
  • cox process
  • cross validation
  • debugging
  • diagnostics
  • difference in differences
  • external likelihood
  • extreme
  • factor analysis
  • forecasting
  • gaussian process
  • gaussian processes
  • generalized linear model
  • gradient-free inference
  • hidden markov model
  • hierarchical model
  • hypothesis testing
  • inference
  • jax
  • latent gaussian process
  • linear model
  • logistic regression
  • loo
  • matrix factorization
  • mediation
  • minibatch
  • mixture model
  • model averaging
  • model comparison
  • model expansion
  • moderation
  • multi-output
  • negative binomial regression
  • neural networks
  • non-parametric
  • nonparametric
  • out of sample predictions
  • panel data
  • parameter estimation
  • path analysis
  • patsy
  • perceptron
  • poisson
  • posterior predictive
  • prediction
  • product recommendation
  • prophet
  • quasi experiments
  • regression
  • robust
  • robust analysis
  • shared data
  • spatial
  • spline
  • sports
  • survival analysis
  • time series
  • time-to-failure
  • truncated
  • variational inference
  • vector autoregressive model
  • waic
  • weibull

Posts tagged Reinforcement Learning

Fitting a Reinforcement Learning Model to Behavioral Data with PyMC

  • 05 August 2022
  • Category: advanced, how-to
  • Tags: Reinforcement Learning PyTensor

Reinforcement Learning models are commonly used in behavioral research to model how animals and humans learn, in situtions where they get to make repeated choices that are followed by some form of feedback, such as a reward or a punishment.

Read more ...


Support PyMC

© Copyright 2022, PyMC Community.

Built with the PyData Sphinx Theme 0.12.0.

Created using Sphinx 5.0.2.