Bayesian Vector Autoregressive Models#
import os
import arviz as az
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pymc as pm
import statsmodels.api as sm
from pymc.sampling_jax import sample_blackjax_nuts
/Users/nathanielforde/mambaforge/envs/myjlabenv/lib/python3.11/site-packages/pymc/sampling/jax.py:39: UserWarning: This module is experimental.
warnings.warn("This module is experimental.")
RANDOM_SEED = 8927
rng = np.random.default_rng(RANDOM_SEED)
az.style.use("arviz-darkgrid")
%config InlineBackend.figure_format = 'retina'
V(ector)A(uto)R(egression) Models#
In this notebook we will outline an application of the Bayesian Vector Autoregressive Modelling. We will draw on the work in the PYMC Labs blogpost (see Vieira [n.d.]). This will be a three part series. In the first we want to show how to fit Bayesian VAR models in PYMC. In the second we will show how to extract extra insight from the fitted model with Impulse Response analysis and make forecasts from the fitted VAR model. In the third and final post we will show in some more detail the benefits of using hierarchical priors with Bayesian VAR models. Specifically, we’ll outline how and why there are actually a range of carefully formulated industry standard priors which work with Bayesian VAR modelling.
In this post we will (i) demonstrate the basic pattern on a simple VAR model on fake data and show how the model recovers the true data generating parameters and (ii) we will show an example applied to macro-economic data and compare the results to those achieved on the same data with statsmodels MLE fits and (iii) show an example of estimating a hierarchical bayesian VAR model over a number of countries.
Autoregressive Models in General#
The idea of a simple autoregressive model is to capture the manner in which past observations of the timeseries are predictive of the current observation. So in traditional fashion, if we model this as a linear phenomena we get simple autoregressive models where the current value is predicted by a weighted linear combination of the past values and an error term.
for however many lags are deemed appropriate to the predict the current observation.
A VAR model is kind of generalisation of this framework in that it retains the linear combination approach but allows us to model multiple timeseries at once. So concretely this mean that \(\mathbf{y}_{t}\) as a vector where:
where the As are coefficient matrices to be combined with the past values of each individual timeseries. For example consider an economic example where we aim to model the relationship and mutual influence of each variable on themselves and one another.
This structure is compact representation using matrix notation. The thing we are trying to estimate when we fit a VAR model is the A matrices that determine the nature of the linear combination that best fits our timeseries data. Such timeseries models can have an auto-regressive or a moving average representation, and the details matter for some of the implication of a VAR model fit.
We’ll see in the next notebook of the series how the moving-average representation of a VAR lends itself to the interpretation of the covariance structure in our model as representing a kind of impulse-response relationship between the component timeseries.
A Concrete Specification with Two lagged Terms#
The matrix notation is convenient to suggest the broad patterns of the model, but it is useful to see the algebra is a simple case. Consider the case of Ireland’s GDP and consumption described as:
In this way we can see that if we can estimate the \(\beta\) terms we have an estimate for the bi-directional effects of each variable on the other. This is a useful feature of the modelling. In what follows i should stress that i’m not an economist and I’m aiming to show only the functionality of these models not give you a decisive opinion about the economic relationships determining Irish GDP figures.
Creating some Fake Data#
def simulate_var(
intercepts, coefs_yy, coefs_xy, coefs_xx, coefs_yx, noises=(1, 1), *, warmup=100, steps=200
):
draws_y = np.zeros(warmup + steps)
draws_x = np.zeros(warmup + steps)
draws_y[:2] = intercepts[0]
draws_x[:2] = intercepts[1]
for step in range(2, warmup + steps):
draws_y[step] = (
intercepts[0]
+ coefs_yy[0] * draws_y[step - 1]
+ coefs_yy[1] * draws_y[step - 2]
+ coefs_xy[0] * draws_x[step - 1]
+ coefs_xy[1] * draws_x[step - 2]
+ rng.normal(0, noises[0])
)
draws_x[step] = (
intercepts[1]
+ coefs_xx[0] * draws_x[step - 1]
+ coefs_xx[1] * draws_x[step - 2]
+ coefs_yx[0] * draws_y[step - 1]
+ coefs_yx[1] * draws_y[step - 2]
+ rng.normal(0, noises[1])
)
return draws_y[warmup:], draws_x[warmup:]
First we generate some fake data with known parameters.
var_y, var_x = simulate_var(
intercepts=(18, 8),
coefs_yy=(-0.8, 0),
coefs_xy=(0.9, 0),
coefs_xx=(1.3, -0.7),
coefs_yx=(-0.1, 0.3),
)
df = pd.DataFrame({"x": var_x, "y": var_y})
df.head()
x | y | |
---|---|---|
0 | 34.606613 | 30.117581 |
1 | 34.773803 | 23.996700 |
2 | 35.455237 | 29.738941 |
3 | 33.886706 | 27.193417 |
4 | 31.837465 | 26.704728 |
fig, axs = plt.subplots(2, 1, figsize=(10, 3))
axs[0].plot(df["x"], label="x")
axs[0].set_title("Series X")
axs[1].plot(df["y"], label="y")
axs[1].set_title("Series Y");
Handling Multiple Lags and Different Dimensions#
When Modelling multiple timeseries and accounting for potentially any number lags to incorporate in our model we need to abstract some of the model definition to helper functions. An example will make this a bit clearer.
### Define a helper function that will construct our autoregressive step for the marginal contribution of each lagged
### term in each of the respective time series equations
def calc_ar_step(lag_coefs, n_eqs, n_lags, df):
ars = []
for j in range(n_eqs):
ar = pm.math.sum(
[
pm.math.sum(lag_coefs[j, i] * df.values[n_lags - (i + 1) : -(i + 1)], axis=-1)
for i in range(n_lags)
],
axis=0,
)
ars.append(ar)
beta = pm.math.stack(ars, axis=-1)
return beta
### Make the model in such a way that it can handle different specifications of the likelihood term
### and can be run for simple prior predictive checks. This latter functionality is important for debugging of
### shape handling issues. Building a VAR model involves quite a few moving parts and it is handy to
### inspect the shape implied in the prior predictive checks.
def make_model(n_lags, n_eqs, df, priors, mv_norm=True, prior_checks=True):
coords = {
"lags": np.arange(n_lags) + 1,
"equations": df.columns.tolist(),
"cross_vars": df.columns.tolist(),
"time": [x for x in df.index[n_lags:]],
}
with pm.Model(coords=coords) as model:
lag_coefs = pm.Normal(
"lag_coefs",
mu=priors["lag_coefs"]["mu"],
sigma=priors["lag_coefs"]["sigma"],
dims=["equations", "lags", "cross_vars"],
)
alpha = pm.Normal(
"alpha", mu=priors["alpha"]["mu"], sigma=priors["alpha"]["sigma"], dims=("equations",)
)
data_obs = pm.Data("data_obs", df.values[n_lags:], dims=["time", "equations"], mutable=True)
betaX = calc_ar_step(lag_coefs, n_eqs, n_lags, df)
betaX = pm.Deterministic(
"betaX",
betaX,
dims=[
"time",
],
)
mean = alpha + betaX
if mv_norm:
n = df.shape[1]
## Under the hood the LKJ prior will retain the correlation matrix too.
noise_chol, _, _ = pm.LKJCholeskyCov(
"noise_chol",
eta=priors["noise_chol"]["eta"],
n=n,
sd_dist=pm.HalfNormal.dist(sigma=priors["noise_chol"]["sigma"]),
)
obs = pm.MvNormal(
"obs", mu=mean, chol=noise_chol, observed=data_obs, dims=["time", "equations"]
)
else:
## This is an alternative likelihood that can recover sensible estimates of the coefficients
## But lacks the multivariate correlation between the timeseries.
sigma = pm.HalfNormal("noise", sigma=priors["noise"]["sigma"], dims=["equations"])
obs = pm.Normal(
"obs", mu=mean, sigma=sigma, observed=data_obs, dims=["time", "equations"]
)
if prior_checks:
idata = pm.sample_prior_predictive()
return model, idata
else:
idata = pm.sample_prior_predictive()
idata.extend(pm.sample(draws=2000, random_seed=130))
pm.sample_posterior_predictive(idata, extend_inferencedata=True, random_seed=rng)
return model, idata
The model has a deterministic component in the auto-regressive calculation which is required at each timestep, but the key point here is that we model the likelihood of the VAR as a multivariate normal distribution with a particular covariance relationship. The estimation of these covariance relationship gives the main insight in the manner in which our component timeseries relate to one another.
We will inspect the structure of a VAR with 2 lags and 2 equations
n_lags = 2
n_eqs = 2
priors = {
"lag_coefs": {"mu": 0.3, "sigma": 1},
"alpha": {"mu": 15, "sigma": 5},
"noise_chol": {"eta": 1, "sigma": 1},
"noise": {"sigma": 1},
}
model, idata = make_model(n_lags, n_eqs, df, priors)
pm.model_to_graphviz(model)
Sampling: [alpha, lag_coefs, noise_chol, obs]
Another VAR with 3 lags and 2 equations.
n_lags = 3
n_eqs = 2
model, idata = make_model(n_lags, n_eqs, df, priors)
for rv, shape in model.eval_rv_shapes().items():
print(f"{rv:>11}: shape={shape}")
pm.model_to_graphviz(model)
Sampling: [alpha, lag_coefs, noise_chol, obs]
lag_coefs: shape=(2, 3, 2)
alpha: shape=(2,)
noise_chol_cholesky-cov-packed__: shape=(3,)
noise_chol: shape=(3,)
We can inspect the correlation matrix between our timeseries which is implied by the prior specification, to see that we have allowed a flat uniform prior over their correlation.
ax = az.plot_posterior(
idata,
var_names="noise_chol_corr",
hdi_prob="hide",
group="prior",
point_estimate="mean",
grid=(2, 2),
kind="hist",
ec="black",
figsize=(10, 4),
)
Now we will fit the VAR with 2 lags and 2 equations
n_lags = 2
n_eqs = 2
model, idata_fake_data = make_model(n_lags, n_eqs, df, priors, prior_checks=False)
Sampling: [alpha, lag_coefs, noise_chol, obs]
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [lag_coefs, alpha, noise_chol]
Sampling 4 chains for 1_000 tune and 2_000 draw iterations (4_000 + 8_000 draws total) took 360 seconds.
Sampling: [obs]
We’ll now plot some of the results to see that the parameters are being broadly recovered. The alpha parameters match well, but the individual lag coefficients show differences.
az.summary(idata_fake_data, var_names=["alpha", "lag_coefs", "noise_chol_corr"])
/Users/nathanielforde/mambaforge/envs/myjlabenv/lib/python3.11/site-packages/arviz/stats/diagnostics.py:584: RuntimeWarning: invalid value encountered in scalar divide
(between_chain_variance / within_chain_variance + num_samples - 1) / (num_samples)
mean | sd | hdi_3% | hdi_97% | mcse_mean | mcse_sd | ess_bulk | ess_tail | r_hat | |
---|---|---|---|---|---|---|---|---|---|
alpha[x] | 8.607 | 1.765 | 5.380 | 12.076 | 0.029 | 0.020 | 3823.0 | 4602.0 | 1.0 |
alpha[y] | 17.094 | 1.778 | 13.750 | 20.431 | 0.027 | 0.019 | 4188.0 | 5182.0 | 1.0 |
lag_coefs[x, 1, x] | 1.333 | 0.062 | 1.218 | 1.450 | 0.001 | 0.001 | 5564.0 | 4850.0 | 1.0 |
lag_coefs[x, 1, y] | -0.120 | 0.069 | -0.247 | 0.011 | 0.001 | 0.001 | 3739.0 | 4503.0 | 1.0 |
lag_coefs[x, 2, x] | -0.711 | 0.097 | -0.890 | -0.527 | 0.002 | 0.001 | 3629.0 | 4312.0 | 1.0 |
lag_coefs[x, 2, y] | 0.267 | 0.073 | 0.126 | 0.403 | 0.001 | 0.001 | 3408.0 | 4318.0 | 1.0 |
lag_coefs[y, 1, x] | 0.838 | 0.061 | 0.718 | 0.948 | 0.001 | 0.001 | 5203.0 | 5345.0 | 1.0 |
lag_coefs[y, 1, y] | -0.800 | 0.069 | -0.932 | -0.673 | 0.001 | 0.001 | 3749.0 | 5131.0 | 1.0 |
lag_coefs[y, 2, x] | 0.094 | 0.097 | -0.087 | 0.277 | 0.002 | 0.001 | 3573.0 | 4564.0 | 1.0 |
lag_coefs[y, 2, y] | -0.004 | 0.074 | -0.145 | 0.133 | 0.001 | 0.001 | 3448.0 | 4484.0 | 1.0 |
noise_chol_corr[0, 0] | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 8000.0 | 8000.0 | NaN |
noise_chol_corr[0, 1] | 0.021 | 0.072 | -0.118 | 0.152 | 0.001 | 0.001 | 6826.0 | 5061.0 | 1.0 |
noise_chol_corr[1, 0] | 0.021 | 0.072 | -0.118 | 0.152 | 0.001 | 0.001 | 6826.0 | 5061.0 | 1.0 |
noise_chol_corr[1, 1] | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 7813.0 | 7824.0 | 1.0 |
az.plot_posterior(idata_fake_data, var_names=["alpha"], ref_val=[8, 18]);
Next we’ll plot the posterior predictive distribution to check that the fitted model can capture the patterns in the observed data. This is the primary test of goodness of fit.
def shade_background(ppc, ax, idx, palette="cividis"):
palette = palette
cmap = plt.get_cmap(palette)
percs = np.linspace(51, 99, 100)
colors = (percs - np.min(percs)) / (np.max(percs) - np.min(percs))
for i, p in enumerate(percs[::-1]):
upper = np.percentile(
ppc[:, idx, :],
p,
axis=1,
)
lower = np.percentile(
ppc[:, idx, :],
100 - p,
axis=1,
)
color_val = colors[i]
ax[idx].fill_between(
x=np.arange(ppc.shape[0]),
y1=upper.flatten(),
y2=lower.flatten(),
color=cmap(color_val),
alpha=0.1,
)
def plot_ppc(idata, df, group="posterior_predictive"):
fig, axs = plt.subplots(2, 1, figsize=(25, 15))
df = pd.DataFrame(idata_fake_data["observed_data"]["obs"].data, columns=["x", "y"])
axs = axs.flatten()
ppc = az.extract(idata, group=group, num_samples=100)["obs"]
# Minus the lagged terms and the constant
shade_background(ppc, axs, 0, "inferno")
axs[0].plot(np.arange(ppc.shape[0]), ppc[:, 0, :].mean(axis=1), color="cyan", label="Mean")
axs[0].plot(df["x"], "o", mfc="black", mec="white", mew=1, markersize=7, label="Observed")
axs[0].set_title("VAR Series 1")
axs[0].legend()
shade_background(ppc, axs, 1, "inferno")
axs[1].plot(df["y"], "o", mfc="black", mec="white", mew=1, markersize=7, label="Observed")
axs[1].plot(np.arange(ppc.shape[0]), ppc[:, 1, :].mean(axis=1), color="cyan", label="Mean")
axs[1].set_title("VAR Series 2")
axs[1].legend()
plot_ppc(idata_fake_data, df)
Again we can check the learned posterior distribution for the correlation parameter.
ax = az.plot_posterior(
idata_fake_data,
var_names="noise_chol_corr",
hdi_prob="hide",
point_estimate="mean",
grid=(2, 2),
kind="hist",
ec="black",
figsize=(10, 6),
)
Applying the Theory: Macro Economic Timeseries#
The data is from the World Bank’s World Development Indicators. In particular, we’re pulling annual values of GDP, consumption, and gross fixed capital formation (investment) for all countries from 1970. Timeseries models in general work best when we have a stable mean throughout the series, so for the estimation procedure we have taken the first difference and the natural log of each of these series.
try:
gdp_hierarchical = pd.read_csv(
os.path.join("..", "data", "gdp_data_hierarchical_clean.csv"), index_col=0
)
except FileNotFoundError:
gdp_hierarchical = pd.read_csv(pm.get_data("gdp_data_hierarchical_clean.csv"), ...)
gdp_hierarchical
country | iso2c | iso3c | year | GDP | CONS | GFCF | dl_gdp | dl_cons | dl_gfcf | more_than_10 | time | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Australia | AU | AUS | 1971 | 4.647670e+11 | 3.113170e+11 | 7.985100e+10 | 0.039217 | 0.040606 | 0.031705 | True | 1 |
2 | Australia | AU | AUS | 1972 | 4.829350e+11 | 3.229650e+11 | 8.209200e+10 | 0.038346 | 0.036732 | 0.027678 | True | 2 |
3 | Australia | AU | AUS | 1973 | 4.955840e+11 | 3.371070e+11 | 8.460300e+10 | 0.025855 | 0.042856 | 0.030129 | True | 3 |
4 | Australia | AU | AUS | 1974 | 5.159300e+11 | 3.556010e+11 | 8.821400e+10 | 0.040234 | 0.053409 | 0.041796 | True | 4 |
5 | Australia | AU | AUS | 1975 | 5.228210e+11 | 3.759000e+11 | 8.255900e+10 | 0.013268 | 0.055514 | -0.066252 | True | 5 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
366 | United States | US | USA | 2016 | 1.850960e+13 | 1.522497e+13 | 3.802207e+12 | 0.016537 | 0.023425 | 0.021058 | True | 44 |
367 | United States | US | USA | 2017 | 1.892712e+13 | 1.553075e+13 | 3.947418e+12 | 0.022306 | 0.019885 | 0.037480 | True | 45 |
368 | United States | US | USA | 2018 | 1.947957e+13 | 1.593427e+13 | 4.119951e+12 | 0.028771 | 0.025650 | 0.042780 | True | 46 |
369 | United States | US | USA | 2019 | 1.992544e+13 | 1.627888e+13 | 4.248643e+12 | 0.022631 | 0.021396 | 0.030758 | True | 47 |
370 | United States | US | USA | 2020 | 1.924706e+13 | 1.582501e+13 | 4.182801e+12 | -0.034639 | -0.028277 | -0.015619 | True | 48 |
370 rows × 12 columns
fig, axs = plt.subplots(3, 1, figsize=(20, 10))
for country in gdp_hierarchical["country"].unique():
temp = gdp_hierarchical[gdp_hierarchical["country"] == country].reset_index()
axs[0].plot(temp["dl_gdp"], label=f"{country}")
axs[1].plot(temp["dl_cons"], label=f"{country}")
axs[2].plot(temp["dl_gfcf"], label=f"{country}")
axs[0].set_title("Differenced and Logged GDP")
axs[1].set_title("Differenced and Logged Consumption")
axs[2].set_title("Differenced and Logged Investment")
axs[0].legend()
axs[1].legend()
axs[2].legend()
plt.suptitle("Macroeconomic Timeseries");
Ireland’s Economic Situation#
Ireland is somewhat infamous for its GDP numbers that are largely the product of foreign direct investment and inflated beyond expectation in recent years by the investment and taxation deals offered to large multi-nationals. We’ll look here at just the relationship between GDP and consumption. We just want to show the mechanics of the VAR estimation, you shouldn’t read too much into the subsequent analysis.
ireland_df = gdp_hierarchical[gdp_hierarchical["country"] == "Ireland"]
ireland_df.reset_index(inplace=True, drop=True)
ireland_df.head()
country | iso2c | iso3c | year | GDP | CONS | GFCF | dl_gdp | dl_cons | dl_gfcf | more_than_10 | time | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Ireland | IE | IRL | 1971 | 3.314234e+10 | 2.897699e+10 | 8.317518e+09 | 0.034110 | 0.043898 | 0.085452 | True | 1 |
1 | Ireland | IE | IRL | 1972 | 3.529322e+10 | 3.063538e+10 | 8.967782e+09 | 0.062879 | 0.055654 | 0.075274 | True | 2 |
2 | Ireland | IE | IRL | 1973 | 3.695956e+10 | 3.280221e+10 | 1.041728e+10 | 0.046134 | 0.068340 | 0.149828 | True | 3 |
3 | Ireland | IE | IRL | 1974 | 3.853412e+10 | 3.381524e+10 | 9.207243e+09 | 0.041720 | 0.030416 | -0.123476 | True | 4 |
4 | Ireland | IE | IRL | 1975 | 4.071386e+10 | 3.477232e+10 | 8.874887e+09 | 0.055024 | 0.027910 | -0.036765 | True | 5 |
n_lags = 2
n_eqs = 2
priors = {
## Set prior for expected positive relationship between the variables.
"lag_coefs": {"mu": 0.3, "sigma": 1},
"alpha": {"mu": 0, "sigma": 0.1},
"noise_chol": {"eta": 1, "sigma": 1},
"noise": {"sigma": 1},
}
model, idata_ireland = make_model(
n_lags, n_eqs, ireland_df[["dl_gdp", "dl_cons"]], priors, prior_checks=False
)
idata_ireland
Sampling: [alpha, lag_coefs, noise_chol, obs]
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [lag_coefs, alpha, noise_chol]
Sampling 4 chains for 1_000 tune and 2_000 draw iterations (4_000 + 8_000 draws total) took 36 seconds.
Sampling: [obs]
-
- chain: 4
- draw: 2000
- equations: 2
- lags: 2
- cross_vars: 2
- noise_chol_dim_0: 3
- time: 49
- betaX_dim_1: 2
- noise_chol_corr_dim_0: 2
- noise_chol_corr_dim_1: 2
- noise_chol_stds_dim_0: 2
- chain(chain)int640 1 2 3
array([0, 1, 2, 3])
- draw(draw)int640 1 2 3 4 ... 1996 1997 1998 1999
array([ 0, 1, 2, ..., 1997, 1998, 1999])
- equations(equations)<U7'dl_gdp' 'dl_cons'
array(['dl_gdp', 'dl_cons'], dtype='<U7')
- lags(lags)int641 2
array([1, 2])
- cross_vars(cross_vars)<U7'dl_gdp' 'dl_cons'
array(['dl_gdp', 'dl_cons'], dtype='<U7')
- noise_chol_dim_0(noise_chol_dim_0)int640 1 2
array([0, 1, 2])
- time(time)int642 3 4 5 6 7 8 ... 45 46 47 48 49 50
array([ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50])
- betaX_dim_1(betaX_dim_1)int640 1
array([0, 1])
- noise_chol_corr_dim_0(noise_chol_corr_dim_0)int640 1
array([0, 1])
- noise_chol_corr_dim_1(noise_chol_corr_dim_1)int640 1
array([0, 1])
- noise_chol_stds_dim_0(noise_chol_stds_dim_0)int640 1
array([0, 1])
- lag_coefs(chain, draw, equations, lags, cross_vars)float640.5197 0.07935 ... -0.2045 0.235
array([[[[[ 5.19656576e-01, 7.93542008e-02], [ 2.61607049e-01, -1.72153516e-01]], [[ 3.58280690e-01, 4.69430533e-01], [-1.41598877e-02, 7.07116179e-02]]], [[[-4.16577591e-02, 4.06592634e-01], [ 3.42706574e-01, -5.74590855e-01]], [[ 3.79750238e-01, 3.33743286e-01], [-1.00207466e-01, 1.43191909e-01]]], [[[ 5.15113761e-01, 5.43954306e-02], [ 2.24354001e-01, -1.25071225e-01]], [[ 3.35089469e-01, 3.15187746e-01], [ 8.77271295e-05, 1.81655203e-01]]], ... [[[ 2.78892253e-01, 2.13837349e-01], [ 2.60725950e-01, -1.27187687e-01]], [[ 3.84079652e-01, 9.48802792e-02], [-2.23869617e-02, 2.29483840e-01]]], [[[ 6.31173009e-01, -5.28215508e-01], [-1.55673631e-01, 3.61610751e-02]], [[ 3.27117933e-01, 4.42098735e-01], [-1.36438735e-01, -5.36320280e-03]]], [[[ 4.27130277e-01, -2.91019063e-01], [ 2.63469903e-02, 2.47138008e-01]], [[ 4.50003809e-01, 7.52912358e-02], [-2.04480247e-01, 2.35021007e-01]]]]])
- alpha(chain, draw, equations)float640.01472 -0.001526 ... 0.01042
array([[[ 0.01471676, -0.00152568], [ 0.0441433 , 0.00203566], [ 0.01079889, -0.00421006], ..., [ 0.01721974, 0.00564757], [ 0.04886959, 0.00799192], [ 0.01667415, 0.00371018]], [[ 0.04548506, 0.01127504], [ 0.04432491, -0.00028508], [ 0.03517707, 0.01830341], ..., [ 0.01805819, -0.00392762], [ 0.05267103, 0.02336937], [ 0.04478405, 0.01691428]], [[ 0.03111884, 0.00949071], [ 0.04501899, 0.00520666], [ 0.03759947, 0.00563301], ..., [ 0.02761799, 0.00727374], [ 0.04597957, 0.01626677], [ 0.05225605, 0.01325381]], [[ 0.0365445 , 0.00588842], [ 0.05292467, 0.01589702], [ 0.05850131, 0.00710232], ..., [ 0.03053105, 0.00836573], [ 0.02544402, 0.00399799], [ 0.03312685, 0.01041744]]])
- noise_chol(chain, draw, noise_chol_dim_0)float640.04206 0.01468 ... 0.01262 0.02424
array([[[0.04205913, 0.01467698, 0.02638489], [0.03959323, 0.00462671, 0.02231385], [0.03619061, 0.0115924 , 0.02253414], ..., [0.04634195, 0.01092772, 0.02286984], [0.04250194, 0.01037661, 0.02405165], [0.04079687, 0.00585382, 0.02524456]], [[0.04310706, 0.00775202, 0.02517299], [0.04330754, 0.01079034, 0.02413016], [0.03938486, 0.01259796, 0.02279358], ..., [0.04874519, 0.01286422, 0.02864554], [0.04704716, 0.01101798, 0.02170003], [0.04075767, 0.001405 , 0.02298114]], [[0.04082337, 0.00868785, 0.0205891 ], [0.04190526, 0.0087839 , 0.02398674], [0.0479445 , 0.01780939, 0.0228716 ], ..., [0.04367215, 0.00381667, 0.02414608], [0.04618374, 0.00985851, 0.0241093 ], [0.04771735, 0.01976765, 0.02301084]], [[0.03937039, 0.01452327, 0.02261826], [0.04017701, 0.00773141, 0.01975944], [0.04501176, 0.00872818, 0.01975194], ..., [0.04350486, 0.00854354, 0.02546362], [0.04543641, 0.01214901, 0.023637 ], [0.04664034, 0.01261794, 0.02423548]]])
- betaX(chain, draw, time, betaX_dim_1)float640.03846 0.05127 ... 0.05137 0.02155
array([[[[ 0.03845828, 0.05127494], [ 0.03626535, 0.0516547 ], [ 0.02439747, 0.03340475], ..., [ 0.06606994, 0.05073041], [ 0.04383074, 0.03827857], [ 0.03082664, -0.00237368]], [[ 0.0064756 , 0.04532004], [ 0.01543582, 0.04199548], [-0.0128284 , 0.03115703], ..., [ 0.027321 , 0.04158131], [ 0.02104586, 0.02920793], [-0.03139562, 0.00495901]], [[ 0.03757968, 0.04658869], [ 0.03462795, 0.04711412], [ 0.0249478 , 0.03598497], ..., ... ..., [ 0.05183073, 0.04113899], [ 0.03959469, 0.02977498], [ 0.01174284, 0.02525658]], [[ 0.00656781, 0.04028385], [-0.01475617, 0.03642657], [ 0.00555572, 0.0204332 ], ..., [ 0.02066245, 0.03446825], [-0.00354691, 0.02198112], [ 0.05819251, -0.01170932]], [[ 0.02240881, 0.03582803], [ 0.01522756, 0.02612792], [ 0.0270731 , 0.02769207], ..., [ 0.03377353, 0.03059268], [ 0.0208055 , 0.01661153], [ 0.05137065, 0.02154906]]]])
- noise_chol_corr(chain, draw, noise_chol_corr_dim_0, noise_chol_corr_dim_1)float641.0 0.4861 0.4861 ... 0.4618 1.0
array([[[[1. , 0.48611626], [0.48611626, 1. ]], [[1. , 0.20302855], [0.20302855, 1. ]], [[1. , 0.45745439], [0.45745439, 1. ]], ..., [[1. , 0.43113357], [0.43113357, 1. ]], [[1. , 0.39613595], [0.39613595, 1. ]], [[1. , 0.22589091], [0.22589091, 1. ]]], ... [[[1. , 0.54030892], [0.54030892, 1. ]], [[1. , 0.36437699], [0.36437699, 1. ]], [[1. , 0.40418614], [0.40418614, 1. ]], ..., [[1. , 0.31809258], [0.31809258, 1. ]], [[1. , 0.45713496], [0.45713496, 1. ]], [[1. , 0.46179879], [0.46179879, 1. ]]]])
- noise_chol_stds(chain, draw, noise_chol_stds_dim_0)float640.04206 0.03019 ... 0.04664 0.02732
array([[[0.04205913, 0.03019232], [0.03959323, 0.02278847], [0.03619061, 0.0253411 ], ..., [0.04634195, 0.02534649], [0.04250194, 0.02619458], [0.04079687, 0.02591438]], [[0.04310706, 0.02633958], [0.04330754, 0.02643286], [0.03938486, 0.02604334], ..., [0.04874519, 0.03140152], [0.04704716, 0.02433695], [0.04075767, 0.02302405]], [[0.04082337, 0.02234703], [0.04190526, 0.02554449], [0.0479445 , 0.02898766], ..., [0.04367215, 0.02444586], [0.04618374, 0.02604704], [0.04771735, 0.03033577]], [[0.03937039, 0.02687956], [0.04017701, 0.02121816], [0.04501176, 0.02159444], ..., [0.04350486, 0.02685867], [0.04543641, 0.02657642], [0.04664034, 0.02732345]]])
- chainPandasIndex
PandasIndex(Int64Index([0, 1, 2, 3], dtype='int64', name='chain'))
- drawPandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999], dtype='int64', name='draw', length=2000))
- equationsPandasIndex
PandasIndex(Index(['dl_gdp', 'dl_cons'], dtype='object', name='equations'))
- lagsPandasIndex
PandasIndex(Int64Index([1, 2], dtype='int64', name='lags'))
- cross_varsPandasIndex
PandasIndex(Index(['dl_gdp', 'dl_cons'], dtype='object', name='cross_vars'))
- noise_chol_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_dim_0'))
- timePandasIndex
PandasIndex(Int64Index([ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], dtype='int64', name='time'))
- betaX_dim_1PandasIndex
PandasIndex(Int64Index([0, 1], dtype='int64', name='betaX_dim_1'))
- noise_chol_corr_dim_0PandasIndex
PandasIndex(Int64Index([0, 1], dtype='int64', name='noise_chol_corr_dim_0'))
- noise_chol_corr_dim_1PandasIndex
PandasIndex(Int64Index([0, 1], dtype='int64', name='noise_chol_corr_dim_1'))
- noise_chol_stds_dim_0PandasIndex
PandasIndex(Int64Index([0, 1], dtype='int64', name='noise_chol_stds_dim_0'))
- created_at :
- 2023-02-21T19:21:22.942792
- arviz_version :
- 0.14.0
- inference_library :
- pymc
- inference_library_version :
- 5.0.1
- sampling_time :
- 36.195340156555176
- tuning_steps :
- 1000
<xarray.Dataset> Dimensions: (chain: 4, draw: 2000, equations: 2, lags: 2, cross_vars: 2, noise_chol_dim_0: 3, time: 49, betaX_dim_1: 2, noise_chol_corr_dim_0: 2, noise_chol_corr_dim_1: 2, noise_chol_stds_dim_0: 2) Coordinates: * chain (chain) int64 0 1 2 3 * draw (draw) int64 0 1 2 3 4 5 ... 1995 1996 1997 1998 1999 * equations (equations) <U7 'dl_gdp' 'dl_cons' * lags (lags) int64 1 2 * cross_vars (cross_vars) <U7 'dl_gdp' 'dl_cons' * noise_chol_dim_0 (noise_chol_dim_0) int64 0 1 2 * time (time) int64 2 3 4 5 6 7 8 9 ... 44 45 46 47 48 49 50 * betaX_dim_1 (betaX_dim_1) int64 0 1 * noise_chol_corr_dim_0 (noise_chol_corr_dim_0) int64 0 1 * noise_chol_corr_dim_1 (noise_chol_corr_dim_1) int64 0 1 * noise_chol_stds_dim_0 (noise_chol_stds_dim_0) int64 0 1 Data variables: lag_coefs (chain, draw, equations, lags, cross_vars) float64 ... alpha (chain, draw, equations) float64 0.01472 ... 0.01042 noise_chol (chain, draw, noise_chol_dim_0) float64 0.04206 ..... betaX (chain, draw, time, betaX_dim_1) float64 0.03846 .... noise_chol_corr (chain, draw, noise_chol_corr_dim_0, noise_chol_corr_dim_1) float64 ... noise_chol_stds (chain, draw, noise_chol_stds_dim_0) float64 0.042... Attributes: created_at: 2023-02-21T19:21:22.942792 arviz_version: 0.14.0 inference_library: pymc inference_library_version: 5.0.1 sampling_time: 36.195340156555176 tuning_steps: 1000
xarray.Dataset -
- chain: 4
- draw: 2000
- time: 49
- equations: 2
- chain(chain)int640 1 2 3
array([0, 1, 2, 3])
- draw(draw)int640 1 2 3 4 ... 1996 1997 1998 1999
array([ 0, 1, 2, ..., 1997, 1998, 1999])
- time(time)int642 3 4 5 6 7 8 ... 45 46 47 48 49 50
array([ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50])
- equations(equations)<U7'dl_gdp' 'dl_cons'
array(['dl_gdp', 'dl_cons'], dtype='<U7')
- obs(chain, draw, time, equations)float640.07266 0.05554 ... 0.131 0.05994
array([[[[ 0.07266384, 0.05554043], [-0.03723739, -0.01044936], [ 0.06613757, 0.01211585], ..., [ 0.13244691, 0.06005397], [-0.02656575, 0.02116827], [ 0.07340778, 0.01205019]], [[ 0.08268452, 0.01698459], [ 0.02978633, 0.01275627], [ 0.01878881, 0.04764196], ..., [ 0.12656091, 0.00217327], [ 0.04914098, -0.00649668], [ 0.03080986, 0.05185062]], [[ 0.02621489, 0.00719224], [ 0.01166067, 0.0217407 ], [ 0.06380577, 0.06132611], ..., ... ..., [ 0.13366362, 0.0631761 ], [ 0.08309923, 0.10108214], [ 0.02315299, 0.02944125]], [[ 0.10004432, 0.08094177], [ 0.02037102, 0.08725727], [ 0.00521511, 0.03733144], ..., [ 0.05345503, 0.08313247], [ 0.03175078, 0.01423723], [ 0.16007207, -0.04465602]], [[ 0.05437818, 0.0252325 ], [ 0.08520019, 0.04364142], [ 0.02855142, 0.03297121], ..., [ 0.15104638, 0.08219397], [ 0.1100447 , 0.010313 ], [ 0.13102166, 0.05993663]]]])
- chainPandasIndex
PandasIndex(Int64Index([0, 1, 2, 3], dtype='int64', name='chain'))
- drawPandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999], dtype='int64', name='draw', length=2000))
- timePandasIndex
PandasIndex(Int64Index([ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], dtype='int64', name='time'))
- equationsPandasIndex
PandasIndex(Index(['dl_gdp', 'dl_cons'], dtype='object', name='equations'))
- created_at :
- 2023-02-21T19:21:57.788979
- arviz_version :
- 0.14.0
- inference_library :
- pymc
- inference_library_version :
- 5.0.1
<xarray.Dataset> Dimensions: (chain: 4, draw: 2000, time: 49, equations: 2) Coordinates: * chain (chain) int64 0 1 2 3 * draw (draw) int64 0 1 2 3 4 5 6 ... 1993 1994 1995 1996 1997 1998 1999 * time (time) int64 2 3 4 5 6 7 8 9 10 11 ... 42 43 44 45 46 47 48 49 50 * equations (equations) <U7 'dl_gdp' 'dl_cons' Data variables: obs (chain, draw, time, equations) float64 0.07266 ... 0.05994 Attributes: created_at: 2023-02-21T19:21:57.788979 arviz_version: 0.14.0 inference_library: pymc inference_library_version: 5.0.1
xarray.Dataset -
- chain: 4
- draw: 2000
- chain(chain)int640 1 2 3
array([0, 1, 2, 3])
- draw(draw)int640 1 2 3 4 ... 1996 1997 1998 1999
array([ 0, 1, 2, ..., 1997, 1998, 1999])
- step_size(chain, draw)float640.2559 0.2559 ... 0.2865 0.2865
array([[0.25588962, 0.25588962, 0.25588962, ..., 0.25588962, 0.25588962, 0.25588962], [0.3697469 , 0.3697469 , 0.3697469 , ..., 0.3697469 , 0.3697469 , 0.3697469 ], [0.42101555, 0.42101555, 0.42101555, ..., 0.42101555, 0.42101555, 0.42101555], [0.28653149, 0.28653149, 0.28653149, ..., 0.28653149, 0.28653149, 0.28653149]])
- perf_counter_start(chain, draw)float641.626e+05 1.626e+05 ... 1.626e+05
array([[162631.64961679, 162631.65651296, 162631.66551496, ..., 162648.95160179, 162648.95829438, 162648.96578838], [162631.04184112, 162631.05123112, 162631.0605795 , ..., 162648.36295925, 162648.37161829, 162648.37843467], [162632.29036962, 162632.30043392, 162632.30901504, ..., 162649.81244104, 162649.81932071, 162649.8258015 ], [162631.24282437, 162631.25291775, 162631.26280779, ..., 162648.34229779, 162648.35076021, 162648.35829229]])
- acceptance_rate(chain, draw)float640.452 0.882 ... 0.6842 0.6953
array([[0.45200921, 0.88196032, 0.85477008, ..., 0.96927221, 0.84755787, 0.72968371], [0.98771315, 0.8009883 , 0.80420022, ..., 0.86016188, 0.75991948, 0.20906901], [0.99751756, 0.9866047 , 0.73547533, ..., 0.95386729, 0.73301308, 0.6478722 ], [0.97393312, 0.4316111 , 0.35684925, ..., 0.95519091, 0.6841993 , 0.69534805]])
- largest_eigval(chain, draw)float64nan nan nan nan ... nan nan nan nan
array([[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]])
- lp(chain, draw)float64192.2 189.8 192.1 ... 185.6 191.9
array([[192.18966643, 189.81728435, 192.14034097, ..., 192.06668954, 193.42245096, 191.36656983], [190.79957544, 190.83997606, 187.12480105, ..., 185.29102408, 187.45700699, 188.40205797], [192.65934246, 194.23007138, 192.32551615, ..., 192.41982885, 189.68059219, 187.40005344], [193.08342569, 191.03132672, 188.24977915, ..., 191.53209216, 185.60644058, 191.94696886]])
- n_steps(chain, draw)float6415.0 15.0 15.0 ... 15.0 15.0 15.0
array([[15., 15., 15., ..., 15., 15., 15.], [15., 15., 15., ..., 15., 15., 15.], [15., 15., 15., ..., 15., 15., 15.], [15., 15., 15., ..., 15., 15., 15.]])
- perf_counter_diff(chain, draw)float640.006816 0.00892 ... 0.009416
array([[0.00681596, 0.00891987, 0.00853138, ..., 0.00662113, 0.00743258, 0.00674708], [0.00924708, 0.00926471, 0.00896663, ..., 0.00856346, 0.00672742, 0.00760842], [0.00998017, 0.0084875 , 0.00804771, ..., 0.00681546, 0.00641321, 0.00689512], [0.01000392, 0.0098055 , 0.00847175, ..., 0.008375 , 0.00745308, 0.00941558]])
- max_energy_error(chain, draw)float642.216 0.4151 0.2987 ... 1.156 1.252
array([[ 2.21643644, 0.41508426, 0.29868443, ..., -0.09954207, 0.39111492, 0.94939641], [-0.23714436, 0.34132827, 0.66750119, ..., 0.33884617, 1.38906123, 4.3288482 ], [-0.13750741, -0.07262999, 0.49443942, ..., -0.80694987, 0.63095501, 0.99504025], [-0.1666122 , 2.17550408, 3.13785432, ..., -0.33376487, 1.15567682, 1.25234077]])
- tree_depth(chain, draw)int644 4 4 4 4 4 4 4 ... 4 4 4 4 4 4 4 4
array([[4, 4, 4, ..., 4, 4, 4], [4, 4, 4, ..., 4, 4, 4], [4, 4, 4, ..., 4, 4, 4], [4, 4, 4, ..., 4, 4, 4]])
- step_size_bar(chain, draw)float640.2629 0.2629 ... 0.2741 0.2741
array([[0.26288954, 0.26288954, 0.26288954, ..., 0.26288954, 0.26288954, 0.26288954], [0.28887259, 0.28887259, 0.28887259, ..., 0.28887259, 0.28887259, 0.28887259], [0.26055628, 0.26055628, 0.26055628, ..., 0.26055628, 0.26055628, 0.26055628], [0.27413238, 0.27413238, 0.27413238, ..., 0.27413238, 0.27413238, 0.27413238]])
- smallest_eigval(chain, draw)float64nan nan nan nan ... nan nan nan nan
array([[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]])
- energy_error(chain, draw)float640.1063 -0.1922 ... 0.6039 -0.8926
array([[ 0.10633161, -0.19223807, -0.07324313, ..., -0.05689863, 0.11804534, 0.04478887], [-0.11199666, 0.20578808, -0.1399356 , ..., 0.205265 , -0.25117668, 1.01038826], [-0.13750741, -0.03513089, 0.20506484, ..., -0.70430077, -0.01280797, -0.16463478], [-0.1666122 , 0.61632692, -0.48263151, ..., 0.10197503, 0.60388915, -0.89258914]])
- diverging(chain, draw)boolFalse False False ... False False
array([[False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False]])
- index_in_trajectory(chain, draw)int648 -6 -6 -6 10 ... -12 10 10 -10 -6
array([[ 8, -6, -6, ..., 7, -11, -10], [-15, 15, 9, ..., 12, 8, 4], [-14, 6, -12, ..., -13, 7, -6], [ 3, 6, 2, ..., 10, -10, -6]])
- energy(chain, draw)float64-186.7 -183.7 ... -182.6 -182.3
array([[-186.71221527, -183.69718813, -180.80066873, ..., -187.0691717 , -185.80251922, -185.85593343], [-186.62691362, -183.68157888, -180.83446734, ..., -180.21656638, -177.21042455, -175.34992831], [-185.6449068 , -189.74583709, -186.80186591, ..., -176.16387582, -182.34563041, -179.97120628], [-187.09037814, -183.89547442, -175.47726337, ..., -188.01409915, -182.5587388 , -182.28892311]])
- process_time_diff(chain, draw)float640.007787 0.01354 ... 0.01025
array([[0.007787, 0.013544, 0.01156 , ..., 0.00884 , 0.010774, 0.009 ], [0.010579, 0.011096, 0.009645, ..., 0.007559, 0.010655, 0.012674], [0.015694, 0.01198 , 0.01068 , ..., 0.009102, 0.008428, 0.009367], [0.013038, 0.014209, 0.010028, ..., 0.012215, 0.008676, 0.010252]])
- reached_max_treedepth(chain, draw)boolFalse False False ... False False
array([[False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False]])
- chainPandasIndex
PandasIndex(Int64Index([0, 1, 2, 3], dtype='int64', name='chain'))
- drawPandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999], dtype='int64', name='draw', length=2000))
- created_at :
- 2023-02-21T19:21:22.951462
- arviz_version :
- 0.14.0
- inference_library :
- pymc
- inference_library_version :
- 5.0.1
- sampling_time :
- 36.195340156555176
- tuning_steps :
- 1000
<xarray.Dataset> Dimensions: (chain: 4, draw: 2000) Coordinates: * chain (chain) int64 0 1 2 3 * draw (draw) int64 0 1 2 3 4 5 ... 1995 1996 1997 1998 1999 Data variables: (12/17) step_size (chain, draw) float64 0.2559 0.2559 ... 0.2865 0.2865 perf_counter_start (chain, draw) float64 1.626e+05 ... 1.626e+05 acceptance_rate (chain, draw) float64 0.452 0.882 ... 0.6842 0.6953 largest_eigval (chain, draw) float64 nan nan nan nan ... nan nan nan lp (chain, draw) float64 192.2 189.8 ... 185.6 191.9 n_steps (chain, draw) float64 15.0 15.0 15.0 ... 15.0 15.0 ... ... energy_error (chain, draw) float64 0.1063 -0.1922 ... -0.8926 diverging (chain, draw) bool False False False ... False False index_in_trajectory (chain, draw) int64 8 -6 -6 -6 10 ... 10 10 -10 -6 energy (chain, draw) float64 -186.7 -183.7 ... -182.6 -182.3 process_time_diff (chain, draw) float64 0.007787 0.01354 ... 0.01025 reached_max_treedepth (chain, draw) bool False False False ... False False Attributes: created_at: 2023-02-21T19:21:22.951462 arviz_version: 0.14.0 inference_library: pymc inference_library_version: 5.0.1 sampling_time: 36.195340156555176 tuning_steps: 1000
xarray.Dataset -
- chain: 1
- draw: 500
- equations: 2
- noise_chol_corr_dim_0: 2
- noise_chol_corr_dim_1: 2
- noise_chol_stds_dim_0: 2
- time: 49
- betaX_dim_1: 2
- noise_chol_dim_0: 3
- lags: 2
- cross_vars: 2
- chain(chain)int640
array([0])
- draw(draw)int640 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499])
- equations(equations)<U7'dl_gdp' 'dl_cons'
array(['dl_gdp', 'dl_cons'], dtype='<U7')
- noise_chol_corr_dim_0(noise_chol_corr_dim_0)int640 1
array([0, 1])
- noise_chol_corr_dim_1(noise_chol_corr_dim_1)int640 1
array([0, 1])
- noise_chol_stds_dim_0(noise_chol_stds_dim_0)int640 1
array([0, 1])
- time(time)int642 3 4 5 6 7 8 ... 45 46 47 48 49 50
array([ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50])
- betaX_dim_1(betaX_dim_1)int640 1
array([0, 1])
- noise_chol_dim_0(noise_chol_dim_0)int640 1 2
array([0, 1, 2])
- lags(lags)int641 2
array([1, 2])
- cross_vars(cross_vars)<U7'dl_gdp' 'dl_cons'
array(['dl_gdp', 'dl_cons'], dtype='<U7')
- alpha(chain, draw, equations)float64-0.02173 -0.1333 ... 0.04148
array([[[-2.17321208e-02, -1.33334684e-01], [ 5.34931179e-02, 1.59499447e-01], [-9.49314248e-03, 5.64533641e-02], [-2.33126640e-02, -1.02705798e-01], [ 1.26733115e-01, 7.69344011e-02], [-1.80317474e-02, 6.57613825e-02], [-1.13071369e-01, 1.51406968e-01], [-1.54448261e-01, 1.31782276e-01], [-3.17081453e-02, 1.90268718e-02], [-1.18113054e-01, 1.62388440e-01], [ 7.05559903e-02, -1.19139213e-02], [ 1.33057457e-01, -3.39059486e-02], [-2.55956804e-02, -6.54044042e-02], [-8.17956874e-03, 1.98647714e-01], [ 5.57149931e-03, -4.32720912e-02], [ 8.87368333e-02, 1.71219288e-01], [ 2.10682139e-02, -1.24616571e-01], [-1.20201764e-03, -1.17523975e-01], [-9.64406169e-02, 6.16024940e-02], [ 8.76603291e-02, -8.72035128e-02], ... [ 1.37657923e-01, 1.27996799e-01], [ 5.13551369e-02, -1.31544671e-01], [ 1.00260415e-02, -1.07408884e-03], [-5.83019260e-02, -2.54488291e-02], [ 3.70272843e-02, 2.20626431e-01], [ 3.03187875e-02, 2.52427570e-02], [ 7.58630825e-02, -2.94336306e-01], [-2.36982827e-02, -8.84849345e-03], [-1.77442781e-02, -8.50522727e-03], [ 4.80910337e-02, 1.46007292e-02], [ 1.67488753e-01, 2.23774479e-01], [-4.09985360e-02, -1.48536396e-02], [ 4.67375840e-02, -2.03043589e-02], [-1.12377222e-01, -8.82438720e-02], [-9.90900254e-02, 1.36751395e-01], [-2.53327369e-02, -7.34878400e-02], [-4.96505019e-02, 8.64545788e-02], [ 3.48784048e-02, 2.66594474e-01], [ 2.83293109e-02, -7.74836476e-02], [ 7.36847485e-02, 4.14770386e-02]]])
- noise_chol_corr(chain, draw, noise_chol_corr_dim_0, noise_chol_corr_dim_1)float641.0 -0.2284 -0.2284 ... -0.5198 1.0
array([[[[ 1. , -0.22837651], [-0.22837651, 1. ]], [[ 1. , 0.82351754], [ 0.82351754, 1. ]], [[ 1. , 0.34327501], [ 0.34327501, 1. ]], ..., [[ 1. , 0.69452847], [ 0.69452847, 1. ]], [[ 1. , 0.42945802], [ 0.42945802, 1. ]], [[ 1. , -0.5198015 ], [-0.5198015 , 1. ]]]])
- noise_chol_stds(chain, draw, noise_chol_stds_dim_0)float640.4793 1.124 ... 0.01728 0.2597
array([[[4.79284896e-01, 1.12391550e+00], [6.97040739e-01, 9.54652181e-01], [1.59097130e+00, 3.31920295e-01], [1.15243377e+00, 7.82453571e-02], [5.53414777e-01, 2.06989481e-01], [2.14023145e+00, 4.47391867e-02], [2.60874906e-01, 1.49356985e+00], [1.20751677e+00, 5.06368239e-01], [2.93252219e-01, 9.22195628e-02], [5.59250055e-01, 8.46677717e-01], [3.33437205e-01, 5.50176517e-01], [1.67605175e-02, 3.56294802e-01], [2.30751158e-01, 1.10548076e+00], [1.55569836e+00, 9.90290581e-01], [1.41325046e+00, 1.01313301e+00], [7.50295560e-01, 6.17414964e-01], [5.22344641e-01, 7.23205322e-01], [1.41627088e+00, 8.49720046e-01], [1.80338965e+00, 1.65866311e+00], [3.62065401e-02, 3.03571965e+00], ... [1.51141877e+00, 1.44833737e+00], [1.10143071e-01, 4.36921244e-01], [1.53377987e+00, 8.92707864e-01], [7.70254088e-01, 2.15079477e+00], [1.24557997e-01, 1.00007158e+00], [1.26361991e+00, 1.12878392e-01], [2.11441792e-01, 6.76319368e-02], [7.25305848e-01, 2.20809866e+00], [2.95885724e-01, 1.33235181e+00], [9.91874436e-01, 9.99117482e-01], [9.37832970e-01, 8.39861991e-01], [1.54576189e-01, 2.57803495e-01], [1.05339644e+00, 2.84286425e-01], [1.87852079e-01, 6.49825798e-01], [1.41159170e-01, 2.71423310e-01], [1.58019583e+00, 1.23724822e+00], [8.82855209e-01, 2.96738277e+00], [3.47493609e-01, 2.50978228e+00], [1.11940315e+00, 6.25613502e-01], [1.72818848e-02, 2.59731360e-01]]])
- betaX(chain, draw, time, betaX_dim_1)float640.05801 0.1928 ... 0.1824 0.1416
array([[[[ 0.05801452, 0.19282852], [ 0.06136907, 0.19021009], [ 0.06498837, 0.12662961], ..., [ 0.1263401 , 0.22265808], [ 0.09465621, 0.1605613 ], [ 0.12072331, 0.0342081 ]], [[ 0.03458694, 0.04445992], [ 0.077954 , 0.03533871], [ 0.01711512, 0.03041004], ..., [ 0.09682593, 0.02314592], [ 0.09850186, 0.01292326], [-0.03044917, -0.00261849]], [[ 0.03363234, 0.0448288 ], [ 0.0509058 , 0.01335756], [ 0.0114371 , -0.01758728], ..., ... ..., [-0.03846538, 0.06103218], [-0.03609514, 0.01253422], [ 0.11130663, 0.03136471]], [[ 0.15524741, 0.02883929], [ 0.16256085, 0.05265778], [ 0.12545039, -0.00345506], ..., [ 0.14048099, 0.04771948], [ 0.11854582, 0.04748313], [ 0.01834497, -0.07335791]], [[ 0.13089945, -0.05260524], [ 0.15576556, -0.06532189], [ 0.20108248, -0.01115042], ..., [ 0.12102344, 0.0121013 ], [ 0.13921009, -0.00432658], [ 0.18239744, 0.14157838]]]])
- noise_chol(chain, draw, noise_chol_dim_0)float640.4793 -0.2567 ... -0.135 0.2219
array([[[ 0.4792849 , -0.2566759 , 1.09421366], [ 0.69704074, 0.78617282, 0.5415654 ], [ 1.5909713 , 0.11393994, 0.31175114], ..., [ 0.34749361, 1.74311526, 1.80570106], [ 1.11940315, 0.26867474, 0.56498331], [ 0.01728188, -0.13500875, 0.22188514]]])
- lag_coefs(chain, draw, equations, lags, cross_vars)float640.8718 -0.5211 ... 0.5638 -0.01947
array([[[[[ 0.87178822, -0.52109414], [ 0.81192969, 0.10257338]], [[ 1.66388457, 1.39492785], [ 0.2402051 , 0.0541874 ]]], [[[-0.30618212, 0.79757413], [ 1.30337738, -0.79747345]], [[ 0.38143198, 0.35600826], [-0.37832199, 0.309069 ]]], [[[-0.2397557 , 0.95264081], [ 0.11852561, -0.19028039]], [[ 0.88990685, 0.74043063], [-0.60850236, -0.71937965]]], ... [[[-0.33751836, -2.02597956], [ 1.06725697, -0.69540281]], [[ 1.2472135 , 0.17422232], [-0.62668472, -0.00886019]]], [[[ 0.89838374, 1.17917942], [-0.07513856, 0.81314769]], [[-0.23967996, 1.03413277], [ 0.52659114, -0.71997653]]], [[[ 0.5282788 , -0.52010047], [ 0.32594737, 2.63132424]], [[ 0.40303183, -1.73076034], [ 0.56375655, -0.01946577]]]]])
- chainPandasIndex
PandasIndex(Int64Index([0], dtype='int64', name='chain'))
- drawPandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
- equationsPandasIndex
PandasIndex(Index(['dl_gdp', 'dl_cons'], dtype='object', name='equations'))
- noise_chol_corr_dim_0PandasIndex
PandasIndex(Int64Index([0, 1], dtype='int64', name='noise_chol_corr_dim_0'))
- noise_chol_corr_dim_1PandasIndex
PandasIndex(Int64Index([0, 1], dtype='int64', name='noise_chol_corr_dim_1'))
- noise_chol_stds_dim_0PandasIndex
PandasIndex(Int64Index([0, 1], dtype='int64', name='noise_chol_stds_dim_0'))
- timePandasIndex
PandasIndex(Int64Index([ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], dtype='int64', name='time'))
- betaX_dim_1PandasIndex
PandasIndex(Int64Index([0, 1], dtype='int64', name='betaX_dim_1'))
- noise_chol_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_dim_0'))
- lagsPandasIndex
PandasIndex(Int64Index([1, 2], dtype='int64', name='lags'))
- cross_varsPandasIndex
PandasIndex(Index(['dl_gdp', 'dl_cons'], dtype='object', name='cross_vars'))
- created_at :
- 2023-02-21T19:20:42.612680
- arviz_version :
- 0.14.0
- inference_library :
- pymc
- inference_library_version :
- 5.0.1
<xarray.Dataset> Dimensions: (chain: 1, draw: 500, equations: 2, noise_chol_corr_dim_0: 2, noise_chol_corr_dim_1: 2, noise_chol_stds_dim_0: 2, time: 49, betaX_dim_1: 2, noise_chol_dim_0: 3, lags: 2, cross_vars: 2) Coordinates: * chain (chain) int64 0 * draw (draw) int64 0 1 2 3 4 5 ... 494 495 496 497 498 499 * equations (equations) <U7 'dl_gdp' 'dl_cons' * noise_chol_corr_dim_0 (noise_chol_corr_dim_0) int64 0 1 * noise_chol_corr_dim_1 (noise_chol_corr_dim_1) int64 0 1 * noise_chol_stds_dim_0 (noise_chol_stds_dim_0) int64 0 1 * time (time) int64 2 3 4 5 6 7 8 9 ... 44 45 46 47 48 49 50 * betaX_dim_1 (betaX_dim_1) int64 0 1 * noise_chol_dim_0 (noise_chol_dim_0) int64 0 1 2 * lags (lags) int64 1 2 * cross_vars (cross_vars) <U7 'dl_gdp' 'dl_cons' Data variables: alpha (chain, draw, equations) float64 -0.02173 ... 0.04148 noise_chol_corr (chain, draw, noise_chol_corr_dim_0, noise_chol_corr_dim_1) float64 ... noise_chol_stds (chain, draw, noise_chol_stds_dim_0) float64 0.479... betaX (chain, draw, time, betaX_dim_1) float64 0.05801 .... noise_chol (chain, draw, noise_chol_dim_0) float64 0.4793 ...... lag_coefs (chain, draw, equations, lags, cross_vars) float64 ... Attributes: created_at: 2023-02-21T19:20:42.612680 arviz_version: 0.14.0 inference_library: pymc inference_library_version: 5.0.1
xarray.Dataset -
- chain: 1
- draw: 500
- time: 49
- equations: 2
- chain(chain)int640
array([0])
- draw(draw)int640 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499])
- time(time)int642 3 4 5 6 7 8 ... 45 46 47 48 49 50
array([ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50])
- equations(equations)<U7'dl_gdp' 'dl_cons'
array(['dl_gdp', 'dl_cons'], dtype='<U7')
- obs(chain, draw, time, equations)float640.4478 -0.1462 ... 0.2672 0.00633
array([[[[ 0.44776047, -0.14616646], [ 0.19862307, -1.56585955], [-0.49237353, 0.10341214], ..., [-0.53594629, 0.0108207 ], [-0.60594248, 1.1033946 ], [-0.29404625, -0.98134169]], [[-0.17508436, -0.39153604], [ 1.38455666, 0.46302004], [ 0.7422721 , 0.89894022], ..., [-0.34396897, 0.32617753], [-0.23282001, -0.28712153], [ 0.44837144, 0.56639172]], [[-2.87839455, -0.232425 ], [ 0.9220839 , -0.62541197], [-0.17169051, -0.02795315], ..., ... ..., [ 0.28226659, 1.30781422], [-0.06117757, -2.03648709], [-0.03451084, -0.82340422]], [[-0.1122591 , -0.0502724 ], [-1.00777064, 0.76872509], [ 1.5855008 , -1.32129034], ..., [-1.79166952, -0.68820344], [ 0.11846899, -0.78256063], [-2.06857488, -0.56486839]], [[ 0.18450661, 0.0350353 ], [ 0.20768096, 0.21245028], [ 0.29240891, 0.13727305], ..., [ 0.20834432, 0.04599256], [ 0.21634715, 0.27336735], [ 0.26716229, 0.00633042]]]])
- chainPandasIndex
PandasIndex(Int64Index([0], dtype='int64', name='chain'))
- drawPandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
- timePandasIndex
PandasIndex(Int64Index([ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], dtype='int64', name='time'))
- equationsPandasIndex
PandasIndex(Index(['dl_gdp', 'dl_cons'], dtype='object', name='equations'))
- created_at :
- 2023-02-21T19:20:42.614050
- arviz_version :
- 0.14.0
- inference_library :
- pymc
- inference_library_version :
- 5.0.1
<xarray.Dataset> Dimensions: (chain: 1, draw: 500, time: 49, equations: 2) Coordinates: * chain (chain) int64 0 * draw (draw) int64 0 1 2 3 4 5 6 7 ... 492 493 494 495 496 497 498 499 * time (time) int64 2 3 4 5 6 7 8 9 10 11 ... 42 43 44 45 46 47 48 49 50 * equations (equations) <U7 'dl_gdp' 'dl_cons' Data variables: obs (chain, draw, time, equations) float64 0.4478 -0.1462 ... 0.00633 Attributes: created_at: 2023-02-21T19:20:42.614050 arviz_version: 0.14.0 inference_library: pymc inference_library_version: 5.0.1
xarray.Dataset -
- time: 49
- equations: 2
- time(time)int642 3 4 5 6 7 8 ... 45 46 47 48 49 50
array([ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50])
- equations(equations)<U7'dl_gdp' 'dl_cons'
array(['dl_gdp', 'dl_cons'], dtype='<U7')
- obs(time, equations)float640.04613 0.06834 ... 0.1264 0.05461
array([[ 0.04613358, 0.06834012], [ 0.04171979, 0.03041591], [ 0.05502444, 0.02790996], [ 0.0138517 , 0.02731819], [ 0.07891562, 0.05362182], [ 0.06940226, 0.08433703], [ 0.03026764, 0.04373127], [ 0.03032869, 0.02126963], [ 0.03271127, 0.01319935], [ 0.02257787, -0.04390915], [-0.00244599, 0.00498376], [ 0.04262235, 0.01226503], [ 0.03038967, 0.03741001], [-0.0042925 , 0.02157749], [ 0.04557635, 0.01055227], [ 0.05085863, 0.01996409], [ 0.05651188, 0.04522139], [ 0.08127144, 0.02305265], [ 0.01911258, 0.01992001], [ 0.03288602, 0.02865146], ... [ 0.05728948, 0.04324766], [ 0.02965185, 0.02806114], [ 0.06565545, 0.03202102], [ 0.05577724, 0.06123691], [ 0.04860445, 0.05797527], [ 0.05169516, 0.06437874], [-0.04590363, 0.00356559], [-0.05235144, -0.04743164], [ 0.01739857, -0.01160896], [ 0.01062858, 0.00262455], [-0.00052368, -0.017138 ], [ 0.01259055, -0.00163944], [ 0.08354761, 0.02976708], [ 0.22455252, 0.02970416], [ 0.02021659, 0.04809311], [ 0.0856272 , 0.02608167], [ 0.08645437, 0.04073803], [ 0.04799944, 0.04137956], [ 0.05701317, -0.05335559], [ 0.1264446 , 0.05460824]])
- timePandasIndex
PandasIndex(Int64Index([ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], dtype='int64', name='time'))
- equationsPandasIndex
PandasIndex(Index(['dl_gdp', 'dl_cons'], dtype='object', name='equations'))
- created_at :
- 2023-02-21T19:20:42.614347
- arviz_version :
- 0.14.0
- inference_library :
- pymc
- inference_library_version :
- 5.0.1
<xarray.Dataset> Dimensions: (time: 49, equations: 2) Coordinates: * time (time) int64 2 3 4 5 6 7 8 9 10 11 ... 42 43 44 45 46 47 48 49 50 * equations (equations) <U7 'dl_gdp' 'dl_cons' Data variables: obs (time, equations) float64 0.04613 0.06834 ... 0.1264 0.05461 Attributes: created_at: 2023-02-21T19:20:42.614347 arviz_version: 0.14.0 inference_library: pymc inference_library_version: 5.0.1
xarray.Dataset -
- time: 49
- equations: 2
- time(time)int642 3 4 5 6 7 8 ... 45 46 47 48 49 50
array([ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50])
- equations(equations)<U7'dl_gdp' 'dl_cons'
array(['dl_gdp', 'dl_cons'], dtype='<U7')
- data_obs(time, equations)float640.04613 0.06834 ... 0.1264 0.05461
array([[ 0.04613358, 0.06834012], [ 0.04171979, 0.03041591], [ 0.05502444, 0.02790996], [ 0.0138517 , 0.02731819], [ 0.07891562, 0.05362182], [ 0.06940226, 0.08433703], [ 0.03026764, 0.04373127], [ 0.03032869, 0.02126963], [ 0.03271127, 0.01319935], [ 0.02257787, -0.04390915], [-0.00244599, 0.00498376], [ 0.04262235, 0.01226503], [ 0.03038967, 0.03741001], [-0.0042925 , 0.02157749], [ 0.04557635, 0.01055227], [ 0.05085863, 0.01996409], [ 0.05651188, 0.04522139], [ 0.08127144, 0.02305265], [ 0.01911258, 0.01992001], [ 0.03288602, 0.02865146], ... [ 0.05728948, 0.04324766], [ 0.02965185, 0.02806114], [ 0.06565545, 0.03202102], [ 0.05577724, 0.06123691], [ 0.04860445, 0.05797527], [ 0.05169516, 0.06437874], [-0.04590363, 0.00356559], [-0.05235144, -0.04743164], [ 0.01739857, -0.01160896], [ 0.01062858, 0.00262455], [-0.00052368, -0.017138 ], [ 0.01259055, -0.00163944], [ 0.08354761, 0.02976708], [ 0.22455252, 0.02970416], [ 0.02021659, 0.04809311], [ 0.0856272 , 0.02608167], [ 0.08645437, 0.04073803], [ 0.04799944, 0.04137956], [ 0.05701317, -0.05335559], [ 0.1264446 , 0.05460824]])
- timePandasIndex
PandasIndex(Int64Index([ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], dtype='int64', name='time'))
- equationsPandasIndex
PandasIndex(Index(['dl_gdp', 'dl_cons'], dtype='object', name='equations'))
- created_at :
- 2023-02-21T19:20:42.614628
- arviz_version :
- 0.14.0
- inference_library :
- pymc
- inference_library_version :
- 5.0.1
<xarray.Dataset> Dimensions: (time: 49, equations: 2) Coordinates: * time (time) int64 2 3 4 5 6 7 8 9 10 11 ... 42 43 44 45 46 47 48 49 50 * equations (equations) <U7 'dl_gdp' 'dl_cons' Data variables: data_obs (time, equations) float64 0.04613 0.06834 ... 0.1264 0.05461 Attributes: created_at: 2023-02-21T19:20:42.614628 arviz_version: 0.14.0 inference_library: pymc inference_library_version: 5.0.1
xarray.Dataset
az.plot_trace(idata_ireland, var_names=["lag_coefs", "alpha", "betaX"], kind="rank_vlines");
def plot_ppc_macro(idata, df, group="posterior_predictive"):
df = pd.DataFrame(idata["observed_data"]["obs"].data, columns=["dl_gdp", "dl_cons"])
fig, axs = plt.subplots(2, 1, figsize=(20, 10))
axs = axs.flatten()
ppc = az.extract(idata, group=group, num_samples=100)["obs"]
shade_background(ppc, axs, 0, "inferno")
axs[0].plot(np.arange(ppc.shape[0]), ppc[:, 0, :].mean(axis=1), color="cyan", label="Mean")
axs[0].plot(df["dl_gdp"], "o", mfc="black", mec="white", mew=1, markersize=7, label="Observed")
axs[0].set_title("Differenced and Logged GDP")
axs[0].legend()
shade_background(ppc, axs, 1, "inferno")
axs[1].plot(df["dl_cons"], "o", mfc="black", mec="white", mew=1, markersize=7, label="Observed")
axs[1].plot(np.arange(ppc.shape[0]), ppc[:, 1, :].mean(axis=1), color="cyan", label="Mean")
axs[1].set_title("Differenced and Logged Consumption")
axs[1].legend()
plot_ppc_macro(idata_ireland, ireland_df)
ax = az.plot_posterior(
idata_ireland,
var_names="noise_chol_corr",
hdi_prob="hide",
point_estimate="mean",
grid=(2, 2),
kind="hist",
ec="black",
figsize=(10, 6),
)
Comparison with Statsmodels#
It’s worthwhile comparing these model fits to the one achieved by Statsmodels just to see if we can recover a similar story.
VAR_model = sm.tsa.VAR(ireland_df[["dl_gdp", "dl_cons"]])
results = VAR_model.fit(2, trend="c")
results.params
dl_gdp | dl_cons | |
---|---|---|
const | 0.034145 | 0.006996 |
L1.dl_gdp | 0.324904 | 0.330003 |
L1.dl_cons | 0.076629 | 0.305824 |
L2.dl_gdp | 0.137721 | -0.053677 |
L2.dl_cons | -0.278745 | 0.033728 |
The intercept parameters broadly agree with our Bayesian model with some differences in the implied relationships defined by the estimates for the lagged terms.
corr = pd.DataFrame(results.resid_corr, columns=["dl_gdp", "dl_cons"])
corr.index = ["dl_gdp", "dl_cons"]
corr
dl_gdp | dl_cons | |
---|---|---|
dl_gdp | 1.000000 | 0.435807 |
dl_cons | 0.435807 | 1.000000 |
The residual correlation estimates reported by statsmodels agree quite closely with the multivariate gaussian correlation between the variables in our Bayesian model.
az.summary(idata_ireland, var_names=["alpha", "lag_coefs", "noise_chol_corr"])
/Users/nathanielforde/mambaforge/envs/myjlabenv/lib/python3.11/site-packages/arviz/stats/diagnostics.py:584: RuntimeWarning: invalid value encountered in scalar divide
(between_chain_variance / within_chain_variance + num_samples - 1) / (num_samples)
mean | sd | hdi_3% | hdi_97% | mcse_mean | mcse_sd | ess_bulk | ess_tail | r_hat | |
---|---|---|---|---|---|---|---|---|---|
alpha[dl_gdp] | 0.033 | 0.011 | 0.012 | 0.053 | 0.000 | 0.000 | 6683.0 | 5919.0 | 1.0 |
alpha[dl_cons] | 0.007 | 0.007 | -0.007 | 0.020 | 0.000 | 0.000 | 7651.0 | 5999.0 | 1.0 |
lag_coefs[dl_gdp, 1, dl_gdp] | 0.321 | 0.170 | 0.008 | 0.642 | 0.002 | 0.002 | 6984.0 | 6198.0 | 1.0 |
lag_coefs[dl_gdp, 1, dl_cons] | 0.071 | 0.273 | -0.447 | 0.582 | 0.003 | 0.003 | 7376.0 | 5466.0 | 1.0 |
lag_coefs[dl_gdp, 2, dl_gdp] | 0.133 | 0.190 | -0.228 | 0.488 | 0.002 | 0.002 | 7471.0 | 6128.0 | 1.0 |
lag_coefs[dl_gdp, 2, dl_cons] | -0.235 | 0.269 | -0.748 | 0.259 | 0.003 | 0.002 | 8085.0 | 5963.0 | 1.0 |
lag_coefs[dl_cons, 1, dl_gdp] | 0.331 | 0.106 | 0.133 | 0.528 | 0.001 | 0.001 | 7670.0 | 6360.0 | 1.0 |
lag_coefs[dl_cons, 1, dl_cons] | 0.302 | 0.170 | -0.012 | 0.616 | 0.002 | 0.001 | 7963.0 | 6150.0 | 1.0 |
lag_coefs[dl_cons, 2, dl_gdp] | -0.054 | 0.118 | -0.279 | 0.163 | 0.001 | 0.001 | 8427.0 | 6296.0 | 1.0 |
lag_coefs[dl_cons, 2, dl_cons] | 0.048 | 0.170 | -0.259 | 0.378 | 0.002 | 0.002 | 8669.0 | 6264.0 | 1.0 |
noise_chol_corr[0, 0] | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 8000.0 | 8000.0 | NaN |
noise_chol_corr[0, 1] | 0.416 | 0.123 | 0.180 | 0.633 | 0.001 | 0.001 | 9155.0 | 6052.0 | 1.0 |
noise_chol_corr[1, 0] | 0.416 | 0.123 | 0.180 | 0.633 | 0.001 | 0.001 | 9155.0 | 6052.0 | 1.0 |
noise_chol_corr[1, 1] | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 7871.0 | 8000.0 | 1.0 |
We plot the alpha parameter estimates against the Statsmodels estimates
az.plot_posterior(idata_ireland, var_names=["alpha"], ref_val=[0.034145, 0.006996]);
az.plot_posterior(
idata_ireland,
var_names=["lag_coefs"],
ref_val=[0.330003, -0.053677],
coords={"equations": "dl_cons", "lags": [1, 2], "cross_vars": "dl_gdp"},
);
We can see here again how the Bayesian VAR model recovers much of the same story. Similar magnitudes in the estimates for the alpha terms for both equations and a clear relationship between the first lagged GDP numbers and consumption along with a very similar covariance structure.
Adding a Bayesian Twist: Hierarchical VARs#
In addition we can add some hierarchical parameters if we want to model multiple countries and the relationship between these economic metrics at the national level. This is a useful technique in the cases where we have reasonably short timeseries data because it allows us to “borrow” information across the countries to inform the estimates of the key parameters.
def make_hierarchical_model(n_lags, n_eqs, df, group_field, prior_checks=True):
cols = [col for col in df.columns if col != group_field]
coords = {"lags": np.arange(n_lags) + 1, "equations": cols, "cross_vars": cols}
groups = df[group_field].unique()
with pm.Model(coords=coords) as model:
## Hierarchical Priors
rho = pm.Beta("rho", alpha=2, beta=2)
alpha_hat_location = pm.Normal("alpha_hat_location", 0, 0.1)
alpha_hat_scale = pm.InverseGamma("alpha_hat_scale", 3, 0.5)
beta_hat_location = pm.Normal("beta_hat_location", 0, 0.1)
beta_hat_scale = pm.InverseGamma("beta_hat_scale", 3, 0.5)
omega_global, _, _ = pm.LKJCholeskyCov(
"omega_global", n=n_eqs, eta=1.0, sd_dist=pm.Exponential.dist(1)
)
for grp in groups:
df_grp = df[df[group_field] == grp][cols]
z_scale_beta = pm.InverseGamma(f"z_scale_beta_{grp}", 3, 0.5)
z_scale_alpha = pm.InverseGamma(f"z_scale_alpha_{grp}", 3, 0.5)
lag_coefs = pm.Normal(
f"lag_coefs_{grp}",
mu=beta_hat_location,
sigma=beta_hat_scale * z_scale_beta,
dims=["equations", "lags", "cross_vars"],
)
alpha = pm.Normal(
f"alpha_{grp}",
mu=alpha_hat_location,
sigma=alpha_hat_scale * z_scale_alpha,
dims=("equations",),
)
betaX = calc_ar_step(lag_coefs, n_eqs, n_lags, df_grp)
betaX = pm.Deterministic(f"betaX_{grp}", betaX)
mean = alpha + betaX
n = df_grp.shape[1]
noise_chol, _, _ = pm.LKJCholeskyCov(
f"noise_chol_{grp}", eta=10, n=n, sd_dist=pm.Exponential.dist(1)
)
omega = pm.Deterministic(f"omega_{grp}", rho * omega_global + (1 - rho) * noise_chol)
obs = pm.MvNormal(f"obs_{grp}", mu=mean, chol=omega, observed=df_grp.values[n_lags:])
if prior_checks:
idata = pm.sample_prior_predictive()
return model, idata
else:
idata = pm.sample_prior_predictive()
idata.extend(sample_blackjax_nuts(2000, random_seed=120))
pm.sample_posterior_predictive(idata, extend_inferencedata=True)
return model, idata
The model design allows for a non-centred parameterisation of the key likeihood for each of the individual country components by allowing the us to shift the country specific estimates away from the hierarchical mean. This is done by rho * omega_global + (1 - rho) * noise_chol
line. The parameter rho
determines the share of impact each country’s data contributes to the estimation of the covariance relationship among the economic variables. Similar country specific adjustments are made with the z_alpha_scale
and z_beta_scale
parameters.
df_final = gdp_hierarchical[["country", "dl_gdp", "dl_cons", "dl_gfcf"]]
model_full_test, idata_full_test = make_hierarchical_model(
2,
3,
df_final,
"country",
prior_checks=False,
)
Sampling: [alpha_Australia, alpha_Canada, alpha_Chile, alpha_Ireland, alpha_New Zealand, alpha_South Africa, alpha_United Kingdom, alpha_United States, alpha_hat_location, alpha_hat_scale, beta_hat_location, beta_hat_scale, lag_coefs_Australia, lag_coefs_Canada, lag_coefs_Chile, lag_coefs_Ireland, lag_coefs_New Zealand, lag_coefs_South Africa, lag_coefs_United Kingdom, lag_coefs_United States, noise_chol_Australia, noise_chol_Canada, noise_chol_Chile, noise_chol_Ireland, noise_chol_New Zealand, noise_chol_South Africa, noise_chol_United Kingdom, noise_chol_United States, obs_Australia, obs_Canada, obs_Chile, obs_Ireland, obs_New Zealand, obs_South Africa, obs_United Kingdom, obs_United States, omega_global, rho, z_scale_alpha_Australia, z_scale_alpha_Canada, z_scale_alpha_Chile, z_scale_alpha_Ireland, z_scale_alpha_New Zealand, z_scale_alpha_South Africa, z_scale_alpha_United Kingdom, z_scale_alpha_United States, z_scale_beta_Australia, z_scale_beta_Canada, z_scale_beta_Chile, z_scale_beta_Ireland, z_scale_beta_New Zealand, z_scale_beta_South Africa, z_scale_beta_United Kingdom, z_scale_beta_United States]
Compiling...
Compilation time = 0:00:12.203665
Sampling...
Sampling time = 0:01:13.331452
Transforming variables...
Transformation time = 0:00:13.215405
Sampling: [obs_Australia, obs_Canada, obs_Chile, obs_Ireland, obs_New Zealand, obs_South Africa, obs_United Kingdom, obs_United States]
idata_full_test
-
- chain: 4
- draw: 2000
- equations: 3
- lags: 2
- cross_vars: 3
- omega_global_dim_0: 6
- noise_chol_Australia_dim_0: 6
- noise_chol_Canada_dim_0: 6
- noise_chol_Chile_dim_0: 6
- noise_chol_Ireland_dim_0: 6
- noise_chol_New Zealand_dim_0: 6
- noise_chol_South Africa_dim_0: 6
- noise_chol_United Kingdom_dim_0: 6
- noise_chol_United States_dim_0: 6
- omega_global_corr_dim_0: 3
- omega_global_corr_dim_1: 3
- omega_global_stds_dim_0: 3
- betaX_Australia_dim_0: 49
- betaX_Australia_dim_1: 3
- noise_chol_Australia_corr_dim_0: 3
- noise_chol_Australia_corr_dim_1: 3
- noise_chol_Australia_stds_dim_0: 3
- omega_Australia_dim_0: 3
- omega_Australia_dim_1: 3
- betaX_Canada_dim_0: 22
- betaX_Canada_dim_1: 3
- noise_chol_Canada_corr_dim_0: 3
- noise_chol_Canada_corr_dim_1: 3
- noise_chol_Canada_stds_dim_0: 3
- omega_Canada_dim_0: 3
- omega_Canada_dim_1: 3
- betaX_Chile_dim_0: 49
- betaX_Chile_dim_1: 3
- noise_chol_Chile_corr_dim_0: 3
- noise_chol_Chile_corr_dim_1: 3
- noise_chol_Chile_stds_dim_0: 3
- omega_Chile_dim_0: 3
- omega_Chile_dim_1: 3
- betaX_Ireland_dim_0: 49
- betaX_Ireland_dim_1: 3
- noise_chol_Ireland_corr_dim_0: 3
- noise_chol_Ireland_corr_dim_1: 3
- noise_chol_Ireland_stds_dim_0: 3
- omega_Ireland_dim_0: 3
- omega_Ireland_dim_1: 3
- betaX_New Zealand_dim_0: 41
- betaX_New Zealand_dim_1: 3
- noise_chol_New Zealand_corr_dim_0: 3
- noise_chol_New Zealand_corr_dim_1: 3
- noise_chol_New Zealand_stds_dim_0: 3
- omega_New Zealand_dim_0: 3
- omega_New Zealand_dim_1: 3
- betaX_South Africa_dim_0: 49
- betaX_South Africa_dim_1: 3
- noise_chol_South Africa_corr_dim_0: 3
- noise_chol_South Africa_corr_dim_1: 3
- noise_chol_South Africa_stds_dim_0: 3
- omega_South Africa_dim_0: 3
- omega_South Africa_dim_1: 3
- betaX_United Kingdom_dim_0: 49
- betaX_United Kingdom_dim_1: 3
- noise_chol_United Kingdom_corr_dim_0: 3
- noise_chol_United Kingdom_corr_dim_1: 3
- noise_chol_United Kingdom_stds_dim_0: 3
- omega_United Kingdom_dim_0: 3
- omega_United Kingdom_dim_1: 3
- betaX_United States_dim_0: 46
- betaX_United States_dim_1: 3
- noise_chol_United States_corr_dim_0: 3
- noise_chol_United States_corr_dim_1: 3
- noise_chol_United States_stds_dim_0: 3
- omega_United States_dim_0: 3
- omega_United States_dim_1: 3
- chain(chain)int640 1 2 3
array([0, 1, 2, 3])
- draw(draw)int640 1 2 3 4 ... 1996 1997 1998 1999
array([ 0, 1, 2, ..., 1997, 1998, 1999])
- equations(equations)<U7'dl_gdp' 'dl_cons' 'dl_gfcf'
array(['dl_gdp', 'dl_cons', 'dl_gfcf'], dtype='<U7')
- lags(lags)int641 2
array([1, 2])
- cross_vars(cross_vars)<U7'dl_gdp' 'dl_cons' 'dl_gfcf'
array(['dl_gdp', 'dl_cons', 'dl_gfcf'], dtype='<U7')
- omega_global_dim_0(omega_global_dim_0)int640 1 2 3 4 5
array([0, 1, 2, 3, 4, 5])
- noise_chol_Australia_dim_0(noise_chol_Australia_dim_0)int640 1 2 3 4 5
array([0, 1, 2, 3, 4, 5])
- noise_chol_Canada_dim_0(noise_chol_Canada_dim_0)int640 1 2 3 4 5
array([0, 1, 2, 3, 4, 5])
- noise_chol_Chile_dim_0(noise_chol_Chile_dim_0)int640 1 2 3 4 5
array([0, 1, 2, 3, 4, 5])
- noise_chol_Ireland_dim_0(noise_chol_Ireland_dim_0)int640 1 2 3 4 5
array([0, 1, 2, 3, 4, 5])
- noise_chol_New Zealand_dim_0(noise_chol_New Zealand_dim_0)int640 1 2 3 4 5
array([0, 1, 2, 3, 4, 5])
- noise_chol_South Africa_dim_0(noise_chol_South Africa_dim_0)int640 1 2 3 4 5
array([0, 1, 2, 3, 4, 5])
- noise_chol_United Kingdom_dim_0(noise_chol_United Kingdom_dim_0)int640 1 2 3 4 5
array([0, 1, 2, 3, 4, 5])
- noise_chol_United States_dim_0(noise_chol_United States_dim_0)int640 1 2 3 4 5
array([0, 1, 2, 3, 4, 5])
- omega_global_corr_dim_0(omega_global_corr_dim_0)int640 1 2
array([0, 1, 2])
- omega_global_corr_dim_1(omega_global_corr_dim_1)int640 1 2
array([0, 1, 2])
- omega_global_stds_dim_0(omega_global_stds_dim_0)int640 1 2
array([0, 1, 2])
- betaX_Australia_dim_0(betaX_Australia_dim_0)int640 1 2 3 4 5 6 ... 43 44 45 46 47 48
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48])
- betaX_Australia_dim_1(betaX_Australia_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_Australia_corr_dim_0(noise_chol_Australia_corr_dim_0)int640 1 2
array([0, 1, 2])
- noise_chol_Australia_corr_dim_1(noise_chol_Australia_corr_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_Australia_stds_dim_0(noise_chol_Australia_stds_dim_0)int640 1 2
array([0, 1, 2])
- omega_Australia_dim_0(omega_Australia_dim_0)int640 1 2
array([0, 1, 2])
- omega_Australia_dim_1(omega_Australia_dim_1)int640 1 2
array([0, 1, 2])
- betaX_Canada_dim_0(betaX_Canada_dim_0)int640 1 2 3 4 5 6 ... 16 17 18 19 20 21
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21])
- betaX_Canada_dim_1(betaX_Canada_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_Canada_corr_dim_0(noise_chol_Canada_corr_dim_0)int640 1 2
array([0, 1, 2])
- noise_chol_Canada_corr_dim_1(noise_chol_Canada_corr_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_Canada_stds_dim_0(noise_chol_Canada_stds_dim_0)int640 1 2
array([0, 1, 2])
- omega_Canada_dim_0(omega_Canada_dim_0)int640 1 2
array([0, 1, 2])
- omega_Canada_dim_1(omega_Canada_dim_1)int640 1 2
array([0, 1, 2])
- betaX_Chile_dim_0(betaX_Chile_dim_0)int640 1 2 3 4 5 6 ... 43 44 45 46 47 48
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48])
- betaX_Chile_dim_1(betaX_Chile_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_Chile_corr_dim_0(noise_chol_Chile_corr_dim_0)int640 1 2
array([0, 1, 2])
- noise_chol_Chile_corr_dim_1(noise_chol_Chile_corr_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_Chile_stds_dim_0(noise_chol_Chile_stds_dim_0)int640 1 2
array([0, 1, 2])
- omega_Chile_dim_0(omega_Chile_dim_0)int640 1 2
array([0, 1, 2])
- omega_Chile_dim_1(omega_Chile_dim_1)int640 1 2
array([0, 1, 2])
- betaX_Ireland_dim_0(betaX_Ireland_dim_0)int640 1 2 3 4 5 6 ... 43 44 45 46 47 48
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48])
- betaX_Ireland_dim_1(betaX_Ireland_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_Ireland_corr_dim_0(noise_chol_Ireland_corr_dim_0)int640 1 2
array([0, 1, 2])
- noise_chol_Ireland_corr_dim_1(noise_chol_Ireland_corr_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_Ireland_stds_dim_0(noise_chol_Ireland_stds_dim_0)int640 1 2
array([0, 1, 2])
- omega_Ireland_dim_0(omega_Ireland_dim_0)int640 1 2
array([0, 1, 2])
- omega_Ireland_dim_1(omega_Ireland_dim_1)int640 1 2
array([0, 1, 2])
- betaX_New Zealand_dim_0(betaX_New Zealand_dim_0)int640 1 2 3 4 5 6 ... 35 36 37 38 39 40
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40])
- betaX_New Zealand_dim_1(betaX_New Zealand_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_New Zealand_corr_dim_0(noise_chol_New Zealand_corr_dim_0)int640 1 2
array([0, 1, 2])
- noise_chol_New Zealand_corr_dim_1(noise_chol_New Zealand_corr_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_New Zealand_stds_dim_0(noise_chol_New Zealand_stds_dim_0)int640 1 2
array([0, 1, 2])
- omega_New Zealand_dim_0(omega_New Zealand_dim_0)int640 1 2
array([0, 1, 2])
- omega_New Zealand_dim_1(omega_New Zealand_dim_1)int640 1 2
array([0, 1, 2])
- betaX_South Africa_dim_0(betaX_South Africa_dim_0)int640 1 2 3 4 5 6 ... 43 44 45 46 47 48
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48])
- betaX_South Africa_dim_1(betaX_South Africa_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_South Africa_corr_dim_0(noise_chol_South Africa_corr_dim_0)int640 1 2
array([0, 1, 2])
- noise_chol_South Africa_corr_dim_1(noise_chol_South Africa_corr_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_South Africa_stds_dim_0(noise_chol_South Africa_stds_dim_0)int640 1 2
array([0, 1, 2])
- omega_South Africa_dim_0(omega_South Africa_dim_0)int640 1 2
array([0, 1, 2])
- omega_South Africa_dim_1(omega_South Africa_dim_1)int640 1 2
array([0, 1, 2])
- betaX_United Kingdom_dim_0(betaX_United Kingdom_dim_0)int640 1 2 3 4 5 6 ... 43 44 45 46 47 48
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48])
- betaX_United Kingdom_dim_1(betaX_United Kingdom_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_United Kingdom_corr_dim_0(noise_chol_United Kingdom_corr_dim_0)int640 1 2
array([0, 1, 2])
- noise_chol_United Kingdom_corr_dim_1(noise_chol_United Kingdom_corr_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_United Kingdom_stds_dim_0(noise_chol_United Kingdom_stds_dim_0)int640 1 2
array([0, 1, 2])
- omega_United Kingdom_dim_0(omega_United Kingdom_dim_0)int640 1 2
array([0, 1, 2])
- omega_United Kingdom_dim_1(omega_United Kingdom_dim_1)int640 1 2
array([0, 1, 2])
- betaX_United States_dim_0(betaX_United States_dim_0)int640 1 2 3 4 5 6 ... 40 41 42 43 44 45
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45])
- betaX_United States_dim_1(betaX_United States_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_United States_corr_dim_0(noise_chol_United States_corr_dim_0)int640 1 2
array([0, 1, 2])
- noise_chol_United States_corr_dim_1(noise_chol_United States_corr_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_United States_stds_dim_0(noise_chol_United States_stds_dim_0)int640 1 2
array([0, 1, 2])
- omega_United States_dim_0(omega_United States_dim_0)int640 1 2
array([0, 1, 2])
- omega_United States_dim_1(omega_United States_dim_1)int640 1 2
array([0, 1, 2])
- alpha_hat_location(chain, draw)float640.01867 0.02452 ... 0.02525 0.02439
array([[0.0186718 , 0.02451757, 0.02175917, ..., 0.02313991, 0.02264565, 0.02262757], [0.02194229, 0.01975299, 0.01973764, ..., 0.02332028, 0.02396733, 0.02430533], [0.02017885, 0.02004322, 0.01743769, ..., 0.02143034, 0.0220604 , 0.02622348], [0.01845575, 0.02208645, 0.01699277, ..., 0.02487232, 0.02524865, 0.02439422]])
- beta_hat_location(chain, draw)float640.03707 0.03328 ... 0.01597 0.02013
array([[0.03707199, 0.03328202, 0.03327573, ..., 0.02022314, 0.01849649, 0.02157836], [0.02625807, 0.03075176, 0.03222849, ..., 0.02858588, 0.01833262, 0.0215363 ], [0.03578886, 0.03454472, 0.03803878, ..., 0.02762439, 0.0293772 , 0.0225766 ], [0.02942673, 0.03678047, 0.03405673, ..., 0.02473977, 0.01597052, 0.0201329 ]])
- lag_coefs_Australia(chain, draw, equations, lags, cross_vars)float640.03359 0.02897 ... -0.04637
array([[[[[ 3.35876842e-02, 2.89656460e-02, 1.44346827e-02], [ 8.37580972e-02, 3.24134878e-02, -2.82482944e-02]], [[ 7.26090826e-02, -2.13751601e-02, 4.48405788e-02], [-8.62745446e-03, 6.50512197e-02, 3.53772829e-02]], [[ 1.33485138e-01, -1.01438292e-02, -3.84827532e-02], [ 8.71983706e-02, 4.94076769e-02, 1.65164026e-02]]], [[[-1.49945684e-02, 1.26595954e-01, 1.85231803e-02], [ 8.36634775e-02, -2.39762157e-02, -4.01462709e-02]], [[ 4.48792564e-03, 8.64514159e-02, 4.15399598e-02], [ 4.96201513e-02, 4.76304546e-02, -4.78025294e-03]], [[ 3.01187469e-02, 3.96725859e-03, 5.16570055e-02], [ 5.89717588e-02, 1.02783667e-01, -5.68183027e-02]]], ... [[[-6.09370080e-04, -4.28833919e-02, -1.72132262e-02], [ 8.35965353e-03, 4.55781405e-02, -2.42132324e-02]], [[ 4.88764274e-02, 6.16764673e-02, 1.71383871e-02], [ 3.83475664e-02, 6.11454731e-02, 1.19527231e-02]], [[-8.09687797e-02, 8.17902158e-03, -5.25417172e-03], [ 2.41407964e-02, 3.25160033e-03, -2.44207844e-02]]], [[[ 2.05738963e-02, -1.11911043e-02, -2.76806626e-02], [ 3.84035145e-02, 7.34061297e-02, 2.56814253e-02]], [[ 4.87554839e-02, 2.48335988e-02, -7.74723598e-03], [ 5.52062580e-02, 6.27619815e-02, 1.48180294e-03]], [[-8.57767638e-02, -5.80385978e-03, 3.99498228e-02], [ 1.82907424e-02, 5.53130978e-02, -4.63726851e-02]]]]])
- alpha_Australia(chain, draw, equations)float640.02263 0.02195 ... 0.0256 0.04313
array([[[0.02263033, 0.0219483 , 0.02278174], [0.02092655, 0.02117198, 0.01957458], [0.02471809, 0.02338723, 0.02126247], ..., [0.02733054, 0.02529274, 0.02926754], [0.0229278 , 0.02485852, 0.02744026], [0.02545857, 0.024065 , 0.02478534]], [[0.02535366, 0.02349025, 0.0258179 ], [0.02633209, 0.02612907, 0.02978084], [0.02298526, 0.02043026, 0.02110987], ..., [0.02911641, 0.01716411, 0.02245609], [0.02612856, 0.02059014, 0.02068046], [0.0288257 , 0.02033768, 0.02226378]], [[0.02258029, 0.02479371, 0.03093723], [0.0258095 , 0.02523357, 0.02888035], [0.02555444, 0.02835614, 0.02272297], ..., [0.02168698, 0.02232613, 0.02013229], [0.02085286, 0.02223427, 0.02259567], [0.02968412, 0.02811583, 0.03453368]], [[0.02283776, 0.02056642, 0.020418 ], [0.02121562, 0.02447455, 0.01693719], [0.01891216, 0.01366135, 0.01818819], ..., [0.03010412, 0.02400799, 0.03880659], [0.03082631, 0.02208602, 0.0357919 ], [0.02795351, 0.02560223, 0.04313025]]])
- lag_coefs_Canada(chain, draw, equations, lags, cross_vars)float640.07658 0.1244 ... 0.05222
array([[[[[ 7.65771654e-02, 1.24359779e-01, 4.76910322e-02], [ 2.93667122e-02, 3.72310073e-02, 3.49173993e-02]], [[ 4.41347272e-02, 8.81811011e-03, -3.05038254e-04], [ 4.78927391e-02, -4.02214926e-03, 8.59285906e-03]], [[ 5.10979503e-02, 6.56671799e-02, -6.60947485e-02], [-6.07279826e-03, 4.58702563e-03, 7.23134454e-02]]], [[[ 9.58053837e-03, -3.61069775e-02, 6.42945320e-02], [ 3.85629973e-02, 3.81227043e-02, 3.71742576e-02]], [[ 1.99385509e-02, 6.05511924e-02, 4.11373442e-02], [ 4.40550718e-02, 8.55328657e-02, 5.53053572e-02]], [[ 1.73913842e-02, 3.34697407e-02, 1.16211321e-01], [ 6.83408791e-02, 4.04932208e-02, -4.08216894e-03]]], ... [[[ 1.60683243e-02, 2.61087715e-02, 3.92718077e-02], [ 4.01146237e-03, -2.37060312e-02, -4.62161483e-02]], [[ 1.56423894e-02, -4.50955622e-02, 3.51574636e-02], [ 5.25022469e-02, 1.23002896e-01, -8.16030734e-03]], [[ 7.57467809e-02, -2.31002172e-02, 5.49980542e-03], [ 9.01656608e-02, 3.48274765e-02, -2.31388941e-02]]], [[[-3.26630109e-02, 8.19079238e-02, 4.89127987e-02], [ 4.26865954e-02, 7.20299244e-03, 4.26620550e-04]], [[-2.17148943e-02, 1.58301049e-02, 1.81258805e-02], [-9.93058176e-03, 6.71043977e-02, -2.33663183e-02]], [[ 4.33928770e-02, 8.33936906e-02, -3.14980137e-02], [ 2.91290443e-02, -4.29921752e-03, 5.22202592e-02]]]]])
- alpha_Canada(chain, draw, equations)float640.01466 0.0211 ... 0.02472 0.01323
array([[[0.01465676, 0.02109877, 0.01855721], [0.02272014, 0.0171131 , 0.01590168], [0.01971124, 0.02032568, 0.02398538], ..., [0.02450623, 0.02726242, 0.02387 ], [0.01963401, 0.01932964, 0.02593143], [0.02264207, 0.02528133, 0.02215 ]], [[0.01932912, 0.01498189, 0.01999218], [0.01633058, 0.01809994, 0.01882801], [0.02273562, 0.02245996, 0.02561266], ..., [0.02284951, 0.02029153, 0.01529943], [0.02505905, 0.01790449, 0.015711 ], [0.02211575, 0.0200038 , 0.01910552]], [[0.02052051, 0.01468323, 0.01967417], [0.02064814, 0.02049906, 0.01690491], [0.0180907 , 0.01218556, 0.02297644], ..., [0.0162916 , 0.01964002, 0.02564671], [0.01835867, 0.01888253, 0.02585724], [0.02651413, 0.02532478, 0.02536538]], [[0.01227525, 0.00859114, 0.01227358], [0.01348817, 0.02417696, 0.0088522 ], [0.02154709, 0.01892863, 0.01997271], ..., [0.0095156 , 0.01107229, 0.01655292], [0.0125203 , 0.01218851, 0.01862845], [0.02285449, 0.02472482, 0.01322827]]])
- lag_coefs_Chile(chain, draw, equations, lags, cross_vars)float640.02434 0.07542 ... 0.0781 0.01202
array([[[[[ 0.02433804, 0.07542013, 0.02079627], [ 0.02467259, 0.00924671, 0.03645728]], [[ 0.11158481, -0.00292094, -0.00202375], [ 0.04498318, 0.03563335, 0.05439888]], [[-0.01269364, 0.08447966, 0.1345423 ], [ 0.02703151, 0.10369712, 0.03123074]]], [[[ 0.0400249 , 0.00464353, -0.00628709], [ 0.0246438 , -0.00507188, 0.07052514]], [[-0.00183431, 0.09928378, 0.03237165], [-0.01362285, -0.00625419, 0.11892922]], [[ 0.18241235, -0.03177573, -0.07682694], [-0.00521849, 0.05234479, -0.00809534]]], ... [[[-0.01113938, 0.0019725 , 0.03888019], [-0.0062262 , -0.00483893, 0.04046326]], [[ 0.00299654, 0.01747632, 0.03686241], [ 0.02648647, 0.04897884, 0.06965917]], [[-0.0606741 , 0.03266535, 0.03051538], [-0.00779615, -0.04198754, 0.02741326]]], [[[-0.05763529, 0.04684115, 0.05842114], [ 0.06032375, -0.01520761, 0.00817284]], [[ 0.05147328, 0.02202345, 0.03813707], [ 0.03425661, -0.04428136, 0.06632278]], [[-0.03186269, 0.02367396, 0.05876045], [ 0.04699741, 0.07809989, 0.01201971]]]]])
- alpha_Chile(chain, draw, equations)float640.01571 0.02137 ... 0.02319 0.01586
array([[[0.0157132 , 0.02136831, 0.02045335], [0.02351699, 0.02662639, 0.03141462], [0.03286153, 0.02286942, 0.03075199], ..., [0.02658816, 0.03269706, 0.02478334], [0.02555073, 0.01428823, 0.02046823], [0.02267686, 0.03051695, 0.02624876]], [[0.03034501, 0.02961176, 0.03364585], [0.02170808, 0.02056791, 0.01763461], [0.03020966, 0.01999711, 0.02384438], ..., [0.02466762, 0.02259074, 0.02228189], [0.02398052, 0.02372222, 0.02535443], [0.02796878, 0.02258504, 0.03085559]], [[0.01955303, 0.02566435, 0.02335706], [0.02350364, 0.02081194, 0.02000074], [0.02316185, 0.02513018, 0.02467213], ..., [0.02045066, 0.02412166, 0.0248603 ], [0.02073028, 0.02140164, 0.02252704], [0.030537 , 0.03115226, 0.04309932]], [[0.01399888, 0.02231359, 0.01948238], [0.03077856, 0.01536788, 0.03785173], [0.02841149, 0.03715862, 0.04349375], ..., [0.02193738, 0.0220144 , 0.02608079], [0.02520517, 0.01965012, 0.02631976], [0.02767934, 0.02319005, 0.0158585 ]]])
- lag_coefs_Ireland(chain, draw, equations, lags, cross_vars)float64-0.01475 0.0387 ... 0.08891 -0.0483
array([[[[[-1.47458909e-02, 3.87000770e-02, 7.32095142e-02], [ 5.44968014e-02, 6.13786029e-02, 6.07706896e-02]], [[ 7.11516666e-02, 6.17419700e-02, 3.69797323e-02], [-2.28057433e-02, 2.31310597e-02, 7.40369221e-02]], [[ 4.21034377e-02, 8.53380497e-02, 2.10043775e-02], [ 6.44045030e-02, 2.85718044e-02, 4.66844083e-02]]], [[[-3.66079960e-02, -6.99503410e-02, 3.55270626e-02], [ 4.47186220e-02, 5.66331099e-02, 8.58598582e-02]], [[ 1.32912956e-01, 9.57010562e-02, -5.63016658e-02], [-2.51360288e-02, 5.79225409e-02, 6.21822960e-02]], [[ 4.97219669e-02, 1.14537321e-01, 1.07593179e-01], [ 7.35308871e-02, 2.34267153e-02, 2.96861721e-02]]], ... [[[-8.84380474e-02, -8.42599965e-02, 4.61872283e-02], [ 2.79902469e-02, -1.40869522e-02, 8.25633877e-02]], [[ 6.87530181e-02, 1.31929462e-01, -4.16510214e-02], [ 3.93040561e-02, 6.10045570e-02, 6.75494335e-02]], [[ 8.75675887e-02, 4.11261218e-02, -1.24124758e-02], [ 3.07071749e-02, 7.66659495e-02, -5.93595914e-02]]], [[[-1.74323530e-02, -3.22370525e-02, 4.50600308e-02], [-3.68440838e-02, -3.93261936e-02, 1.16347198e-01]], [[ 1.76288211e-01, 8.77909100e-02, -4.35165182e-02], [-8.67491049e-03, 7.67305270e-02, 1.00445039e-01]], [[-1.64839671e-02, -6.10096604e-02, -3.32595903e-03], [-1.71668080e-02, 8.89058437e-02, -4.82995669e-02]]]]])
- alpha_Ireland(chain, draw, equations)float640.02198 0.01418 ... 0.01683 0.02614
array([[[ 0.02198322, 0.01418345, 0.02419023], [ 0.03777364, 0.01957305, 0.007676 ], [ 0.03905588, 0.00898405, 0.02174625], ..., [ 0.03748313, 0.00654185, 0.03192922], [ 0.04685017, 0.01413632, 0.01609315], [ 0.04041201, 0.00862381, 0.04599709]], [[ 0.03520116, 0.00864943, 0.00656473], [ 0.03829489, 0.00718548, 0.03974323], [ 0.02576244, 0.01144094, 0.0282918 ], ..., [ 0.0432292 , 0.01897203, 0.02735446], [ 0.04027758, 0.015737 , 0.02289279], [ 0.03741163, 0.01368131, 0.0235036 ]], [[ 0.03536222, 0.00628412, 0.02729948], [ 0.03195189, 0.00413109, 0.02516136], [ 0.03224617, -0.00497087, 0.01715696], ..., [ 0.0236229 , 0.01416163, 0.0175816 ], [ 0.02379884, 0.01203721, 0.01973875], [ 0.03983179, 0.02813402, 0.01942888]], [[ 0.03169915, 0.01435424, 0.00716936], [ 0.02786021, 0.0175066 , 0.02303785], [ 0.02952215, 0.0132017 , 0.01848463], ..., [ 0.04300775, 0.01253962, 0.04658183], [ 0.0444028 , 0.01022499, 0.04403121], [ 0.04460278, 0.01682959, 0.02614388]]])
- lag_coefs_New Zealand(chain, draw, equations, lags, cross_vars)float640.0048 0.05318 ... 0.04656 -0.0277
array([[[[[ 4.79955216e-03, 5.31766056e-02, 2.48001324e-02], [ 5.58142948e-02, 1.47251580e-02, 1.04404015e-02]], [[ 3.81839725e-02, 7.30885639e-02, 1.76983648e-02], [ 5.93599488e-02, 1.11361964e-01, 4.43170275e-02]], [[ 6.40167465e-02, 1.36748394e-03, 1.17405811e-02], [ 5.95082083e-02, 7.40553746e-02, 3.81552533e-02]]], [[[ 8.78219915e-02, -6.00073761e-03, 4.07609942e-02], [ 2.35031517e-02, 7.66114780e-03, -1.93500127e-02]], [[ 2.80442830e-02, 6.12851857e-02, 3.56544049e-02], [ 5.68764616e-02, 2.83996406e-02, 2.45822496e-02]], [[ 3.56649231e-02, 5.96405911e-02, 8.16509026e-02], [ 2.51308596e-02, 1.76106189e-02, 1.55734961e-02]]], ... [[[ 6.08300123e-02, 5.40027130e-03, 2.18290830e-02], [-1.47997178e-02, -3.39122149e-02, 2.20944587e-03]], [[ 5.50643240e-02, 1.45434541e-02, 1.25605541e-02], [ 4.65713980e-02, 7.46702282e-02, 4.67125897e-02]], [[ 3.57338813e-02, -5.94263736e-03, 4.39900990e-02], [ 3.32299355e-02, 2.50841926e-03, -3.00312747e-02]]], [[[ 1.00552259e-02, 4.50610550e-02, 7.41251774e-03], [ 3.41258860e-02, -5.06182746e-02, -1.04310654e-02]], [[ 5.72570423e-02, -3.84271622e-02, -1.19819215e-02], [ 3.52150287e-02, 9.21245461e-02, 2.60604335e-02]], [[-2.53743801e-02, -1.13646205e-02, 1.13368406e-02], [-2.90074466e-02, 4.65603013e-02, -2.77021942e-02]]]]])
- alpha_New Zealand(chain, draw, equations)float640.01807 0.01578 ... 0.01983 0.03992
array([[[0.01806595, 0.01578354, 0.02132896], [0.01849362, 0.01821667, 0.02721401], [0.02175469, 0.0210865 , 0.03053284], ..., [0.02166377, 0.02133174, 0.02287388], [0.02227288, 0.02121135, 0.04353785], [0.02431044, 0.02571715, 0.03797068]], [[0.01357315, 0.01525364, 0.03253792], [0.02149012, 0.01032409, 0.04364514], [0.01709379, 0.00976669, 0.01623808], ..., [0.01432591, 0.01743779, 0.018122 ], [0.01355899, 0.01595626, 0.0193063 ], [0.01456813, 0.02003352, 0.01938244]], [[0.01530257, 0.01052001, 0.01589447], [0.01779147, 0.01416527, 0.03140318], [0.01520138, 0.02154654, 0.01620615], ..., [0.02688245, 0.02381044, 0.02911095], [0.02494411, 0.02434003, 0.02838573], [0.01827265, 0.01760944, 0.02858284]], [[0.02083092, 0.01857572, 0.03654796], [0.0173904 , 0.01745286, 0.02767121], [0.01518223, 0.01778471, 0.01862866], ..., [0.02430962, 0.02117357, 0.027361 ], [0.02282666, 0.02391651, 0.03463807], [0.0229253 , 0.01982705, 0.03992305]]])
- lag_coefs_South Africa(chain, draw, equations, lags, cross_vars)float640.02541 0.0323 ... 0.03994 0.04386
array([[[[[ 2.54095143e-02, 3.22996821e-02, -3.78097958e-02], [ 3.30784901e-02, 3.32517969e-02, 2.43080368e-02]], [[-9.86439293e-02, 4.45366969e-02, -6.30080609e-05], [ 8.70273005e-02, 5.25125138e-02, 4.04114465e-02]], [[ 9.69363170e-02, 2.63073323e-01, 6.80924159e-02], [ 3.98254154e-02, -5.09993065e-03, 1.62231177e-02]]], [[[ 9.36984734e-03, -2.09374358e-03, 6.01439063e-02], [-7.98620343e-03, -6.73846794e-03, -3.22391351e-02]], [[ 9.86833948e-02, 6.64104290e-02, -2.58380556e-02], [ 9.64834973e-02, 2.63595052e-02, -2.52072028e-03]], [[ 3.62143695e-02, -4.25291141e-02, 7.39053616e-02], [ 1.87797137e-02, 3.77284890e-02, 4.37549702e-03]]], ... [[[ 2.64687906e-02, 3.02834530e-02, -4.36897775e-02], [ 3.48406493e-02, 1.82883799e-02, 2.12566437e-02]], [[ 3.54839360e-03, 5.47190827e-02, -3.93874975e-02], [ 7.21056725e-02, 2.29115900e-02, 1.35507151e-02]], [[ 4.50271670e-02, 5.52450887e-02, 1.01087607e-01], [ 3.18211228e-02, 2.47540401e-02, 5.77444944e-03]]], [[[-2.76738599e-02, 8.16627740e-04, -4.45258332e-02], [ 7.58972502e-02, 1.59472376e-02, 1.02064434e-02]], [[ 4.77160550e-03, 1.77943203e-02, -3.34288369e-02], [ 1.34368769e-02, 1.81799799e-02, 6.96008594e-02]], [[ 1.21946612e-02, 1.53324684e-02, 3.92778531e-03], [-5.05276037e-02, 3.99390702e-02, 4.38554698e-02]]]]])
- alpha_South Africa(chain, draw, equations)float640.01901 0.02268 ... 0.02615 0.01921
array([[[0.01901206, 0.02267808, 0.01252531], [0.02365439, 0.02239854, 0.01985251], [0.01989679, 0.0220024 , 0.02289861], ..., [0.02342958, 0.02782862, 0.0204841 ], [0.01941431, 0.02520382, 0.02561481], [0.01896969, 0.02357623, 0.00824644]], [[0.01886008, 0.01832178, 0.01410036], [0.02367257, 0.02362778, 0.01416356], [0.0225035 , 0.02658002, 0.00968991], ..., [0.02055409, 0.02657549, 0.02245432], [0.02386924, 0.02856589, 0.02115162], [0.02554601, 0.02735204, 0.01862188]], [[0.02579471, 0.02669597, 0.01457212], [0.02038627, 0.02124575, 0.01988502], [0.01889323, 0.02108477, 0.01104016], ..., [0.01864664, 0.02434247, 0.01947247], [0.01867105, 0.02427485, 0.01796539], [0.02647408, 0.02692301, 0.02550011]], [[0.02029671, 0.01952457, 0.01701635], [0.02484205, 0.0302312 , 0.01765515], [0.01887883, 0.01832262, 0.01998897], ..., [0.02211716, 0.0234445 , 0.01737949], [0.02049095, 0.02449048, 0.01372325], [0.01958324, 0.02615177, 0.0192084 ]]])
- lag_coefs_United Kingdom(chain, draw, equations, lags, cross_vars)float640.05761 0.0274 ... -0.001775
array([[[[[ 0.05761089, 0.0274021 , 0.06190151], [ 0.0303106 , 0.02267695, 0.022874 ]], [[ 0.06043142, 0.03478302, 0.04597842], [ 0.07937197, -0.00305529, 0.03926115]], [[ 0.03332199, 0.0388056 , 0.07837689], [ 0.06736559, 0.05133304, 0.01535437]]], [[[ 0.07256452, 0.03193285, 0.02712607], [-0.02385231, -0.00268805, 0.02936621]], [[ 0.02799926, 0.01307594, 0.00886335], [ 0.08689927, 0.05372776, 0.0417348 ]], [[ 0.02188457, 0.07145874, 0.00491692], [-0.01293862, 0.00302327, 0.08443964]]], ... [[[-0.03540654, 0.03918698, -0.0236554 ], [ 0.0313792 , 0.00023517, -0.04371644]], [[-0.02134802, 0.01079886, 0.01746537], [-0.00471261, 0.01925858, 0.01601016]], [[ 0.01603853, 0.05085501, 0.0145626 ], [ 0.02313931, 0.01217526, 0.0396992 ]]], [[[-0.00831721, 0.03572049, 0.00071403], [ 0.05066002, -0.02539158, -0.04745072]], [[-0.02264026, -0.02155469, 0.0228943 ], [ 0.06722884, 0.06794606, 0.0012824 ]], [[ 0.04053666, -0.02507347, 0.00704099], [ 0.04290297, 0.03121881, -0.00177492]]]]])
- alpha_United Kingdom(chain, draw, equations)float640.01761 0.0174 ... 0.02397 0.03081
array([[[0.01761044, 0.0173951 , 0.02129423], [0.0176642 , 0.01433993, 0.01677042], [0.02329868, 0.01875666, 0.02059026], ..., [0.01786654, 0.01739791, 0.01644063], [0.02238243, 0.02049453, 0.02055928], [0.02340852, 0.02267508, 0.02877013]], [[0.02386716, 0.02211543, 0.02609062], [0.02504201, 0.02045074, 0.02446627], [0.02175407, 0.01676955, 0.01927967], ..., [0.01627474, 0.01657221, 0.01809339], [0.01732528, 0.01775757, 0.02601687], [0.01766491, 0.0168034 , 0.02148137]], [[0.01928886, 0.0196265 , 0.02452796], [0.01989401, 0.01935756, 0.02009702], [0.01772464, 0.01579172, 0.01717696], ..., [0.02173498, 0.01841189, 0.01904664], [0.02109208, 0.01908113, 0.01839193], [0.02285666, 0.01746688, 0.0264231 ]], [[0.01553938, 0.01546997, 0.01883268], [0.02013144, 0.01803673, 0.02642818], [0.01576727, 0.0137904 , 0.01420119], ..., [0.02646206, 0.02333062, 0.03159167], [0.02633969, 0.0241074 , 0.03232729], [0.02580901, 0.02397482, 0.03080724]]])
- lag_coefs_United States(chain, draw, equations, lags, cross_vars)float640.05386 0.07003 ... 0.0723 0.004706
array([[[[[ 0.05385766, 0.07003283, -0.01949482], [ 0.00329857, 0.09423554, 0.07803958]], [[ 0.06490934, 0.07647176, 0.05103275], [ 0.08451833, -0.0374088 , 0.04119398]], [[ 0.05504028, -0.02860814, 0.13109432], [-0.00247949, 0.05276195, 0.06957375]]], [[[ 0.01604 , 0.01100934, -0.03315874], [ 0.06344352, 0.01422943, -0.00157213]], [[ 0.00252157, 0.02109809, -0.03896577], [ 0.00764408, 0.09185135, 0.04494501]], [[ 0.03205271, 0.10364687, 0.0513285 ], [ 0.05215269, 0.00552455, -0.00398291]]], ... [[[-0.01745811, 0.00109955, -0.00234785], [ 0.03402061, 0.09196414, 0.02566072]], [[-0.02224305, 0.0419783 , 0.04470546], [ 0.01403128, -0.02350721, 0.03120449]], [[ 0.02172906, 0.1183168 , 0.08603979], [ 0.06071867, 0.06974237, -0.00941608]]], [[[ 0.04054993, 0.00168886, 0.00204798], [ 0.03383608, 0.10752412, 0.00560849]], [[-0.02446238, 0.04611171, 0.06851168], [-0.02977762, 0.05915644, 0.02482298]], [[ 0.02284061, 0.14261998, 0.06283344], [ 0.07870006, 0.0722998 , 0.00470552]]]]])
- alpha_United States(chain, draw, equations)float640.01419 0.01439 ... 0.02238 0.01881
array([[[0.01418759, 0.01438589, 0.01789529], [0.02598225, 0.02316987, 0.02425873], [0.02084087, 0.02086088, 0.02268168], ..., [0.0204412 , 0.0181257 , 0.02361468], [0.02663887, 0.02359841, 0.02279745], [0.02026212, 0.01972341, 0.02921508]], [[0.0175823 , 0.01768812, 0.02307349], [0.01971666, 0.02071566, 0.02032091], [0.02503186, 0.01945537, 0.03680978], ..., [0.02330623, 0.02334296, 0.02966311], [0.02803772, 0.02371988, 0.02919166], [0.02598188, 0.02355839, 0.0276434 ]], [[0.01639968, 0.02059404, 0.02225209], [0.01516595, 0.02000534, 0.02034232], [0.01458103, 0.01572419, 0.01855923], ..., [0.02262127, 0.02314291, 0.02062068], [0.02356728, 0.02304586, 0.01839952], [0.0255272 , 0.02383072, 0.02629042]], [[0.01706889, 0.01811566, 0.01869895], [0.02279406, 0.02093012, 0.02772462], [0.01559355, 0.01706438, 0.01418122], ..., [0.02425718, 0.02578526, 0.02210795], [0.02031301, 0.02141664, 0.02099948], [0.02015476, 0.02238341, 0.01881354]]])
- rho(chain, draw)float640.9738 0.9781 ... 0.9742 0.9753
array([[0.97381057, 0.97811196, 0.97718909, ..., 0.97291982, 0.97309863, 0.97185022], [0.97169609, 0.97574464, 0.98000959, ..., 0.97467665, 0.97241438, 0.97316599], [0.9735359 , 0.97198473, 0.97272403, ..., 0.97850145, 0.97746482, 0.96707703], [0.97773676, 0.98241421, 0.98392793, ..., 0.97368538, 0.97423528, 0.97533662]])
- alpha_hat_scale(chain, draw)float640.03402 0.06921 ... 0.0618 0.05396
array([[0.0340201 , 0.06921044, 0.04641818, ..., 0.05165564, 0.04568199, 0.04795936], [0.04631599, 0.04024177, 0.05337683, ..., 0.05200098, 0.05838578, 0.05937475], [0.03724151, 0.03813012, 0.04173683, ..., 0.02798101, 0.02871392, 0.04856515], [0.04674297, 0.08268964, 0.03778358, ..., 0.06162338, 0.06179729, 0.0539579 ]])
- beta_hat_scale(chain, draw)float640.1702 0.342 ... 0.1799 0.1808
array([[0.17021182, 0.34198411, 0.26618006, ..., 0.06287413, 0.07082787, 0.08768702], [0.3597106 , 0.27083859, 0.30066 , ..., 0.26574803, 0.25635952, 0.22758884], [0.19117243, 0.15246495, 0.14473942, ..., 0.22679552, 0.21358656, 0.18949933], [0.17265149, 0.19386224, 0.19044116, ..., 0.24260553, 0.17989111, 0.18078723]])
- omega_global(chain, draw, omega_global_dim_0)float640.01219 0.01523 ... 0.02162
array([[[ 0.01218822, 0.01522638, 0.00340886, 0.04335285, -0.00217308, 0.01861989], [ 0.01083866, 0.01506469, 0.00349949, 0.0472653 , -0.00810183, 0.018163 ], [ 0.01259793, 0.01506935, 0.00208336, 0.04179166, -0.00406775, 0.01350414], ..., [ 0.01538368, 0.01404695, 0.00268523, 0.04535721, -0.00239042, 0.02258466], [ 0.01742328, 0.01408072, 0.00235776, 0.0409345 , -0.00474418, 0.02801085], [ 0.01750076, 0.01519746, 0.00180543, 0.04712585, -0.00497156, 0.02631976]], [[ 0.0096274 , 0.01478892, 0.00145199, 0.04426993, -0.00713694, 0.01616899], [ 0.00911955, 0.01458634, 0.00192268, 0.04352532, -0.00404308, 0.01334046], [ 0.01766926, 0.01318953, 0.00298321, 0.04399035, -0.00028403, 0.01900471], ... [ 0.01309073, 0.01593698, 0.00427304, 0.04297485, -0.00625585, 0.01492482], [ 0.0131297 , 0.01589519, 0.00361034, 0.04235657, -0.00874078, 0.01485382], [ 0.00700433, 0.01694595, 0.00332786, 0.04951525, -0.00864561, 0.01417389]], [[ 0.01657584, 0.01618365, 0.00121653, 0.0422487 , -0.00536544, 0.02459217], [ 0.01429305, 0.01678552, 0.00287854, 0.04766878, -0.00414733, 0.02612078], [ 0.01566869, 0.01544929, 0.00087778, 0.04375063, -0.00088749, 0.02315615], ..., [ 0.01586844, 0.01328996, 0.00212247, 0.04404664, -0.00792564, 0.01707153], [ 0.01742985, 0.01451352, 0.00181431, 0.04416283, -0.00880546, 0.01853252], [ 0.01696835, 0.01391377, 0.00294613, 0.04265286, -0.00773243, 0.02161597]]])
- z_scale_beta_Australia(chain, draw)float640.2373 0.1376 ... 0.1337 0.3954
array([[0.23733251, 0.13758496, 0.19790107, ..., 0.2683509 , 0.43777321, 0.35490719], [0.16970964, 0.21089276, 0.14752019, ..., 0.20887074, 0.23847507, 0.22740404], [0.18774524, 0.14397091, 0.15803173, ..., 0.1643344 , 0.14389337, 0.17155927], [0.10184759, 0.14977448, 0.3845752 , ..., 0.18333872, 0.13368225, 0.39544404]])
- z_scale_alpha_Australia(chain, draw)float640.1813 0.08512 ... 0.1576 0.1759
array([[0.18129685, 0.08512272, 0.0825424 , ..., 0.19052937, 0.15158669, 0.06388572], [0.17619474, 0.153651 , 0.06209169, ..., 0.10879725, 0.08143188, 0.06124614], [0.33806892, 0.49434597, 1.13783518, ..., 0.07934544, 0.07641461, 0.12051502], [0.08740891, 0.18904214, 0.05906492, ..., 0.14159646, 0.15764165, 0.17588977]])
- noise_chol_Australia(chain, draw, noise_chol_Australia_dim_0)float640.175 -0.242 ... 0.1645 0.5325
array([[[ 1.75009064e-01, -2.41966458e-01, 3.77166882e-01, 1.56158277e-01, -1.59097525e-01, 7.46226834e-01], [ 3.27286769e-01, -2.06759636e-01, 3.54521164e-01, -8.78404918e-02, 4.12028275e-01, 8.42911934e-01], [ 2.07376788e-01, -2.06733568e-01, 4.11655442e-01, 2.57772407e-02, 1.69097846e-01, 9.34743848e-01], ..., [ 2.45074957e-02, -1.01309189e-01, 3.91599644e-01, -8.20973318e-04, 1.39181640e-02, 5.49412749e-01], [ 8.91305701e-02, -2.30866065e-01, 3.59675857e-01, -2.97897976e-03, 6.01460053e-02, 3.37379791e-01], [ 2.16267881e-02, -1.11576650e-01, 3.04429183e-01, 1.22103651e-01, -5.15246121e-02, 4.76004283e-01]], [[ 1.80956346e-01, -3.70271679e-01, 3.33901352e-01, 8.23575085e-02, 8.00168014e-02, 7.95469864e-01], [ 2.64017511e-01, -2.39610503e-01, 5.50213319e-01, -1.59290032e-01, -1.33132507e-01, 9.18250045e-01], [ 3.78297087e-02, -2.21234165e-01, 4.00785255e-01, 8.51259660e-02, 1.06339001e-01, 7.79466870e-01], ... [ 2.79023071e-01, -1.51039405e-01, 3.01706251e-01, 3.58180855e-01, -2.48669353e-01, 1.10849280e+00], [ 2.38854510e-01, -1.53208579e-01, 3.35600307e-01, 3.42964310e-01, -2.13285861e-01, 1.03457056e+00], [ 2.83983860e-01, -1.71796239e-01, 2.64743634e-01, -1.51092936e-01, 2.46242864e-01, 7.41648021e-01]], [[ 3.88131454e-02, -2.57320192e-01, 4.46016074e-01, 1.77476846e-01, 1.70444198e-01, 1.04851247e+00], [ 5.64098263e-02, -4.67351932e-01, 5.61366262e-01, -1.42738917e-01, 6.95320006e-02, 3.81719892e-01], [ 9.50186978e-02, -3.52880748e-01, 6.78903260e-01, 1.26887043e-01, 1.46595764e-01, 1.12829866e+00], ..., [ 5.44019018e-02, -8.85788728e-02, 3.77625681e-01, 1.10980108e-01, -3.72535830e-02, 5.80429028e-01], [ 1.19395831e-01, -1.42548367e-01, 4.40398013e-01, 1.12601989e-01, 2.26750509e-02, 6.72758290e-01], [ 4.30490930e-02, -1.93142846e-01, 2.47198998e-01, 1.32553510e-01, 1.64468953e-01, 5.32483910e-01]]])
- z_scale_beta_Canada(chain, draw)float640.2736 0.1216 ... 0.2629 0.1972
array([[0.2735902 , 0.12162758, 0.11923719, ..., 0.13616515, 0.14870794, 0.05126063], [0.14145914, 0.12747015, 0.0982708 , ..., 0.17180652, 0.11555273, 0.16727532], [0.2060911 , 0.22955972, 0.26356065, ..., 0.08780278, 0.10534695, 0.22093912], [0.32993518, 0.19789392, 0.39145888, ..., 0.21750251, 0.26293427, 0.19716798]])
- z_scale_alpha_Canada(chain, draw)float640.08111 0.1227 ... 0.1777 0.2688
array([[0.08110592, 0.12272377, 0.05527928, ..., 0.10023458, 0.07230248, 0.12789033], [0.05879722, 0.06700424, 0.11058203, ..., 0.14818562, 0.16656002, 0.14363989], [0.18159317, 0.25359104, 0.07573124, ..., 0.21241997, 0.19597401, 0.04952498], [0.18317507, 0.17453329, 0.13894086, ..., 0.24241797, 0.1777248 , 0.26877818]])
- noise_chol_Canada(chain, draw, noise_chol_Canada_dim_0)float640.6638 0.0403 ... -0.02874 1.181
array([[[ 6.63841785e-01, 4.02967263e-02, 2.04557467e-01, -3.10301667e-01, 1.25588803e-01, 1.01760068e+00], [ 6.72230622e-01, -4.74201546e-02, 3.33468200e-01, -3.04123311e-01, -4.22369969e-02, 8.59109258e-01], [ 4.57499126e-01, -5.57666085e-02, 3.18614921e-01, -1.03435905e-01, 8.60762345e-02, 6.93882000e-01], ..., [ 2.30208350e-01, 2.74176641e-02, 2.56026965e-01, 2.01260051e-02, -6.28187911e-02, 4.99447487e-01], [ 5.83471852e-01, 2.55009302e-02, 2.77491150e-01, -7.29815653e-02, 5.98704180e-03, 5.32175073e-01], [ 1.87097085e-01, -4.50975162e-03, 2.83794397e-01, -2.83188386e-02, -5.74170966e-02, 1.14011854e-01]], [[ 6.89523056e-01, -2.17638947e-02, 3.82243288e-01, -6.11455949e-02, -1.92379821e-02, 8.70274743e-01], [ 5.55481211e-01, -5.85440097e-02, 4.65228228e-01, -1.53032878e-03, -1.32821915e-01, 7.89445881e-01], [ 4.53761398e-01, 1.59819847e-01, 4.83133151e-01, -3.05715714e-01, -1.73863908e-01, 7.85893772e-01], ... [ 4.85396113e-01, -3.85010996e-02, 2.33234358e-01, -5.22581485e-01, 4.28506714e-02, 1.00645794e+00], [ 3.46013361e-01, -1.84679330e-02, 1.96155466e-01, -5.02223862e-01, 6.40270519e-02, 1.10288891e+00], [ 8.72890641e-01, 4.78983043e-03, 2.11053539e-01, 1.98180766e-01, 7.17155397e-02, 5.77998588e-01]], [[ 5.46223094e-01, 8.02505172e-02, 4.28484043e-01, 4.69637940e-02, 9.00672883e-02, 2.69944183e-01], [ 6.57170687e-01, -6.57688587e-02, 4.63001795e-01, -2.95114470e-01, -3.89604532e-01, 1.08588097e+00], [ 2.75631216e-01, -1.73436251e-01, 5.19705110e-01, -2.65749997e-01, -2.14369730e-01, 9.95094373e-01], ..., [ 4.67895105e-01, 5.50273105e-02, 2.99271255e-01, 9.60565736e-02, -3.34911241e-02, 7.01043032e-01], [ 6.05728593e-01, 3.43214520e-02, 2.83898860e-01, 2.63613127e-01, -6.90725341e-02, 4.55452429e-01], [ 3.56213359e-01, 1.20525000e-01, 2.67727139e-01, 2.76738914e-01, -2.87416099e-02, 1.18068692e+00]]])
- z_scale_beta_Chile(chain, draw)float640.229 0.1375 ... 0.1742 0.1706
array([[0.22899545, 0.13745599, 0.26038696, ..., 0.13271286, 0.13996626, 0.15617835], [0.26796844, 0.32397628, 0.24143166, ..., 0.25281944, 0.26285746, 0.16012707], [0.20003227, 0.22413203, 0.30807896, ..., 0.14702232, 0.13655419, 0.1611094 ], [0.12665211, 0.24503321, 0.18145351, ..., 0.16564633, 0.17421741, 0.1706148 ]])
- z_scale_alpha_Chile(chain, draw)float640.07176 0.2501 ... 0.1016 0.1626
array([[0.07175951, 0.25009334, 0.19247747, ..., 0.12144125, 0.14389656, 0.1744608 ], [0.20995505, 0.06798136, 0.16792769, ..., 0.03781415, 0.07560244, 0.09997186], [0.21493768, 0.29495032, 0.14100461, ..., 0.06206609, 0.07443024, 0.14303804], [0.13749515, 0.22017398, 0.6602553 , ..., 0.11386145, 0.10160067, 0.1626074 ]])
- noise_chol_Chile(chain, draw, noise_chol_Chile_dim_0)float641.271 0.9954 1.283 ... 0.5532 2.125
array([[[ 1.2713373 , 0.99536111, 1.28338935, 1.43952188, -0.69684319, 3.22514992], [ 1.40839471, 0.82535996, 1.42734938, 2.09533359, 0.20054094, 2.56586225], [ 1.05662488, 0.98155735, 1.40916792, 2.25338675, -0.04921683, 2.57580404], ..., [ 1.02995934, 0.97970855, 1.26811632, 1.72261509, -0.43159677, 2.03247673], [ 0.76983079, 0.81360878, 1.21848554, 1.2396864 , -0.11252982, 1.81461605], [ 0.99565962, 0.99407386, 1.25909894, 1.71498306, -0.62919271, 1.96900818]], [[ 0.91491713, 0.64726681, 1.17620428, 1.13147863, -0.547197 , 1.88580175], [ 1.54426339, 1.47131482, 1.35847226, 1.30451326, -0.78581922, 2.46155797], [ 1.27900868, 1.54230622, 1.52963902, 1.83131565, 0.5343465 , 2.95908756], ... [ 1.24101022, 0.70036062, 1.73477873, 2.24664284, -0.29344026, 2.921228 ], [ 1.31056705, 0.69116523, 1.67466986, 2.01757443, -0.10579977, 2.69521769], [ 1.07192233, 0.70944004, 1.11569374, 1.23529904, -0.19623784, 2.13655411]], [[ 1.29850511, 1.28588941, 1.64259491, 1.7294742 , 0.0111462 , 2.8531648 ], [ 1.52666923, 0.8594347 , 1.75708998, 2.21872494, -0.79308502, 2.63176654], [ 1.5267606 , 1.79104923, 2.16756641, 1.94223226, 0.36577915, 3.31320725], ..., [ 0.87863276, 0.8645867 , 1.48716868, 0.7839539 , 0.41107075, 2.68110651], [ 1.00752757, 0.84377287, 1.1272519 , 0.996813 , 0.25069931, 2.33427424], [ 0.84373496, 1.00729207, 1.34513209, 1.64363374, 0.55315572, 2.12510581]]])
- z_scale_beta_Ireland(chain, draw)float640.1352 0.1684 ... 0.3071 0.3112
array([[0.13515041, 0.16841739, 0.30566275, ..., 1.48384029, 1.26618831, 0.96436302], [0.3002465 , 0.28440437, 0.33272395, ..., 0.34859503, 0.79417514, 0.92764539], [0.67713418, 0.6029362 , 0.81819988, ..., 0.09783051, 0.08830116, 0.17834987], [0.51930341, 0.40452318, 0.60129802, ..., 0.24895538, 0.30705064, 0.3112266 ]])
- z_scale_alpha_Ireland(chain, draw)float640.1537 0.2775 ... 0.3494 0.1915
array([[0.15365594, 0.27748515, 0.18524841, ..., 0.23729754, 0.277995 , 0.45423572], [0.54173165, 0.39499058, 0.12902482, ..., 0.14727411, 0.19081259, 0.22165099], [0.21476198, 0.35359638, 0.52720217, ..., 0.21613118, 0.23772488, 0.18405737], [0.38242312, 0.17401459, 0.61464315, ..., 0.33708139, 0.34940602, 0.19148278]])
- noise_chol_Ireland(chain, draw, noise_chol_Ireland_dim_0)float641.099 0.02963 ... 1.621 5.085
array([[[ 1.09856315e+00, 2.96345808e-02, 8.88518456e-01, 1.18432112e+00, 7.80034956e-01, 5.25735088e+00], [ 1.07918067e+00, -2.05821137e-01, 7.64516760e-01, -1.16674692e+00, 3.26435914e+00, 5.32583601e+00], [ 1.24444094e+00, -2.02728601e-01, 8.79825094e-01, 1.53841085e-01, 2.59942547e+00, 6.25166488e+00], ..., [ 1.11717345e+00, 5.72925103e-03, 7.30154454e-01, 1.10736309e+00, 9.78603280e-01, 4.12596194e+00], [ 7.93225416e-01, 3.96900413e-02, 7.30948192e-01, 7.10023342e-01, 6.40733857e-01, 4.98412443e+00], [ 7.96916953e-01, -3.01712273e-01, 6.96183628e-01, 5.40954711e-01, 2.35211699e-01, 4.32336375e+00]], [[ 1.20283767e+00, -1.12765130e-01, 5.36040832e-01, -1.27636978e-01, -1.13365143e-01, 4.65049433e+00], [ 1.53763364e+00, -1.42004911e-01, 7.42971220e-01, 1.52130992e+00, 6.66403722e-01, 5.57555202e+00], [ 1.16328075e+00, -2.05732679e-02, 9.36285222e-01, -1.53102862e-01, 6.71542056e-01, 5.95187924e+00], ... [ 1.30702197e+00, -1.76249618e-02, 8.98338946e-01, -3.28047179e-01, 1.67962272e+00, 6.36003612e+00], [ 1.40896661e+00, 7.13161220e-02, 8.78038893e-01, -3.61588797e-01, 1.63284155e+00, 6.57950999e+00], [ 9.00442033e-01, -2.24069083e-01, 6.06522848e-01, 8.79411998e-01, 5.61357327e-01, 4.00038854e+00]], [[ 1.18230319e+00, 4.55079986e-02, 1.19128657e+00, -4.81292673e-01, 2.06992190e+00, 5.61763730e+00], [ 1.60181970e+00, -3.19149032e-01, 1.24078737e+00, 1.92005227e+00, 1.76821775e+00, 7.22578334e+00], [ 1.84183924e+00, 5.61535923e-02, 1.28691485e+00, 8.02460978e-02, 1.53634315e+00, 7.22210371e+00], ..., [ 7.49490956e-01, -1.16600008e-01, 8.05857611e-01, 5.68280518e-01, 1.15574604e+00, 4.22703637e+00], [ 9.77372681e-01, -3.38123856e-02, 8.61020572e-01, 7.34992405e-01, 1.54307067e+00, 4.42657352e+00], [ 8.55023254e-01, -5.75545242e-02, 7.53220868e-01, 4.80298630e-01, 1.62075372e+00, 5.08493460e+00]]])
- z_scale_beta_New Zealand(chain, draw)float640.1568 0.08317 ... 0.1449 0.2407
array([[0.15683385, 0.08317042, 0.13644376, ..., 0.19817681, 0.17730541, 0.22075204], [0.5867957 , 0.40664675, 0.35064204, ..., 0.05166904, 0.10526662, 0.10598518], [0.13731709, 0.14729447, 0.12760717, ..., 0.31413699, 0.23158494, 0.20586101], [0.21346263, 0.10403213, 0.0915345 , ..., 0.11785439, 0.14485999, 0.24066193]])
- z_scale_alpha_New Zealand(chain, draw)float640.06729 0.1558 ... 0.0909 0.1513
array([[0.06728825, 0.15575064, 0.08057372, ..., 0.07220709, 0.45988372, 0.23094846], [0.16929306, 0.32510334, 0.21386455, ..., 0.11509867, 0.17749332, 0.22863279], [0.18692619, 0.23632348, 0.161856 , ..., 0.15370496, 0.1313317 , 0.14631651], [0.2057581 , 0.12671456, 0.08567276, ..., 0.1089957 , 0.09089895, 0.15134683]])
- noise_chol_New Zealand(chain, draw, noise_chol_New Zealand_dim_0)float640.3045 -0.06226 ... 0.2427 0.9673
array([[[ 3.04534370e-01, -6.22634500e-02, 2.30251224e-01, 2.01567722e-01, 2.65176062e-01, 1.06972539e+00], [ 3.82169968e-01, -4.06752918e-02, 4.63471842e-01, 1.48383846e-01, -2.94155889e-01, 1.25174283e+00], [ 2.55826468e-01, -1.03929812e-01, 3.52208684e-01, 1.45533050e-03, -3.15286904e-01, 1.34032233e+00], ..., [ 2.05796473e-01, -5.65038526e-02, 2.72676759e-01, 5.95319409e-02, -3.31483910e-03, 1.01420246e+00], [ 4.82275138e-02, 6.49698870e-03, 3.52252939e-01, 3.08376854e-01, -7.09945453e-02, 8.00374888e-01], [ 9.96422216e-02, -5.69869594e-02, 3.13139052e-01, 1.36687914e-02, 3.74159443e-01, 6.01404006e-01]], [[ 2.96598158e-01, -1.08394671e-01, 2.60064930e-01, 1.00045077e-01, 3.19963468e-01, 1.19235821e+00], [ 3.68460688e-01, -3.49347948e-02, 2.83659682e-01, 3.45677041e-01, 5.39216581e-01, 1.45119058e+00], [ 2.66135207e-02, 9.64662349e-03, 3.33401467e-01, 2.63245444e-01, 6.99199673e-02, 1.46319812e+00], ... [ 3.26785762e-01, -4.75896942e-03, 3.03815676e-01, 3.38326213e-01, 2.46681368e-01, 1.25811353e+00], [ 2.97884495e-01, 1.45474559e-02, 3.52891674e-01, 3.54507591e-01, 2.40356352e-01, 1.30447621e+00], [ 3.22936817e-01, -7.71868518e-02, 3.44787980e-01, 3.25989775e-01, 1.82560741e-01, 9.62272141e-01]], [[ 1.13775785e-01, -1.82756720e-01, 4.41427531e-01, 5.97232948e-03, -2.33164515e-01, 9.26564865e-01], [ 1.42230904e-01, -1.63438802e-01, 4.09825107e-01, 2.92795734e-01, 4.23615387e-01, 8.43114622e-01], [ 7.12239451e-02, -2.82156301e-01, 5.83461936e-01, 8.92206268e-03, -1.95493032e-01, 1.13518904e+00], ..., [ 3.32437466e-03, -1.37439148e-01, 3.00861920e-01, 4.94537599e-01, 3.04668942e-01, 1.37290872e+00], [ 3.17245931e-03, -7.99550666e-02, 3.00059226e-01, 3.14103380e-01, 2.40498251e-01, 1.06737550e+00], [ 1.14414877e-03, -7.99456081e-02, 3.98605313e-01, 3.91641437e-01, 2.42681961e-01, 9.67280276e-01]]])
- z_scale_beta_South Africa(chain, draw)float640.3028 0.1277 ... 0.1921 0.182
array([[0.30279332, 0.12767831, 0.15688923, ..., 0.11106397, 0.07656958, 0.15029139], [0.16064704, 0.23639388, 0.25754659, ..., 0.21746958, 0.10513224, 0.18164775], [0.195663 , 0.35295286, 0.22305478, ..., 0.19855045, 0.19005038, 0.24907922], [0.36338798, 0.18413234, 0.33847675, ..., 0.14802796, 0.19205473, 0.18199475]])
- z_scale_alpha_South Africa(chain, draw)float640.1202 0.1349 ... 0.09006 0.285
array([[0.12015358, 0.13493375, 0.0648358 , ..., 0.0919638 , 0.11024545, 0.15766595], [0.19301864, 0.10122474, 0.17276421, ..., 0.15145001, 0.09511091, 0.10969005], [0.19955557, 0.10092923, 0.10426572, ..., 0.22171558, 0.24340049, 0.05818205], [0.09480666, 0.17856244, 0.08669728, ..., 0.10470687, 0.09005743, 0.28504025]])
- noise_chol_South Africa(chain, draw, noise_chol_South Africa_dim_0)float640.5349 0.1351 ... 0.2843 1.149
array([[[ 0.53491119, 0.13506689, 0.40925099, 0.43060671, -0.04671164, 1.0742078 ], [ 0.45006859, 0.07702614, 0.34843147, -0.02380481, 0.80738061, 1.36785175], [ 0.52911664, 0.13904279, 0.41561976, 0.00761154, 0.44446315, 1.71151233], ..., [ 0.23929478, 0.09108124, 0.29150512, 0.10614043, 0.4239166 , 1.44119576], [ 0.14620517, 0.21860656, 0.39451119, 0.09698263, 0.15418555, 0.74159188], [ 0.28107478, 0.06335196, 0.34141938, 0.14266915, 0.30526329, 1.100891 ]], [[ 0.49119883, 0.15763616, 0.31821425, 0.13000937, 0.3455772 , 1.17951536], [ 0.49160659, 0.07070707, 0.36609474, 0.07224417, 0.22384536, 0.92835412], [ 0.25065236, 0.13493957, 0.48287582, -0.01236825, 0.54147728, 1.49648292], ... [ 0.40043675, 0.12059527, 0.36182001, 0.10638281, 0.6239572 , 1.4541244 ], [ 0.43754413, 0.11387724, 0.36797442, 0.15256836, 0.55618488, 1.36590003], [ 0.50844278, 0.09389214, 0.28417363, 0.05590844, 0.04556554, 1.03091337]], [[ 0.26213754, 0.04139005, 0.42227785, 0.04647854, 0.3332211 , 1.07929115], [ 0.51324612, 0.19302037, 0.48696068, 0.15771725, 0.1630655 , 1.01446079], [ 0.26241434, -0.06503686, 0.65109777, -0.15114364, 0.40048984, 1.62352346], ..., [ 0.30151799, 0.30066605, 0.53213137, 0.15784736, 0.24558049, 0.96060019], [ 0.29867705, 0.2828084 , 0.63986031, 0.14439767, 0.23703673, 0.82412247], [ 0.38222619, 0.30634978, 0.30199813, 0.27346263, 0.28426877, 1.14890924]]])
- z_scale_beta_United Kingdom(chain, draw)float640.1376 0.09737 ... 0.1359 0.1997
array([[0.13760451, 0.09736721, 0.12133271, ..., 0.38925306, 0.31667518, 0.22890316], [0.08038653, 0.12553462, 0.11477293, ..., 0.10769304, 0.10138577, 0.09951663], [0.18279412, 0.15005027, 0.20712825, ..., 0.27319416, 0.28391667, 0.2400759 ], [0.29275696, 0.32307963, 0.20115288, ..., 0.1389538 , 0.13585209, 0.19965343]])
- z_scale_alpha_United Kingdom(chain, draw)float640.1097 0.09583 ... 0.1165 0.1876
array([[0.10966504, 0.09583278, 0.13833385, ..., 0.09903016, 0.27157237, 0.07406357], [0.28040022, 0.29537069, 0.16468849, ..., 0.20401608, 0.14859831, 0.18059844], [0.1275927 , 0.12371497, 0.10679124, ..., 0.11174293, 0.09064222, 0.11041517], [0.16563187, 0.07109435, 0.21548179, ..., 0.08576826, 0.11648584, 0.18761744]])
- noise_chol_United Kingdom(chain, draw, noise_chol_United Kingdom_dim_0)float640.5181 0.1999 ... -0.1428 0.2923
array([[[ 0.51805797, 0.19992544, 0.30611624, -0.03454922, -0.01727734, 0.41038445], [ 0.68063806, 0.17285 , 0.27621605, -0.13650163, 0.02689844, 0.63340957], [ 0.51016555, 0.07968407, 0.35528676, -0.18907501, 0.04373098, 0.57833823], ..., [ 0.49340154, 0.22100705, 0.28635307, -0.06541354, 0.02756904, 0.41131211], [ 0.27505083, 0.1507085 , 0.31188928, -0.02256363, -0.01017282, 0.1454976 ], [ 0.50307347, 0.21146626, 0.35233846, -0.00891876, -0.01109241, 0.08418704]], [[ 0.6697906 , 0.28757484, 0.29081772, 0.06310447, 0.05003137, 0.7282122 ], [ 0.63231443, 0.20961938, 0.35221502, 0.08923737, -0.0575837 , 0.8520046 ], [ 0.33083785, 0.09791569, 0.43926716, -0.2223944 , -0.02075778, 0.89974798], ... [ 0.63094498, 0.20722517, 0.26024145, -0.03947783, 0.06077336, 0.61679501], [ 0.65253291, 0.23846856, 0.26753542, -0.02718829, 0.08001931, 0.68236906], [ 0.55743991, 0.11498019, 0.19110445, -0.17102278, -0.12158564, 0.48314845]], [[ 0.45621561, 0.21430995, 0.43111356, -0.02009445, -0.0292364 , 0.14654888], [ 0.75799236, 0.23109576, 0.45407524, -0.11053904, 0.00506073, 0.41793986], [ 0.73309182, 0.20437958, 0.70501178, -0.0333804 , -0.02803683, 0.2328034 ], ..., [ 0.35197736, 0.19878206, 0.34689516, -0.07355243, 0.14105923, 0.66148832], [ 0.33940493, 0.14350584, 0.35364014, -0.06468686, 0.08147527, 0.49926483], [ 0.49475088, 0.34038341, 0.36892313, -0.03643964, -0.14280008, 0.2922645 ]]])
- z_scale_beta_United States(chain, draw)float640.1896 0.1494 ... 0.2437 0.2543
array([[0.18958107, 0.1494162 , 0.13635679, ..., 0.15827189, 0.15912714, 0.13280968], [0.12184466, 0.21663823, 0.22549997, ..., 0.09356525, 0.10630629, 0.08359141], [0.41350269, 0.50259608, 0.45436826, ..., 0.1459533 , 0.14197894, 0.18436221], [0.10960259, 0.06220923, 0.08655352, ..., 0.21524427, 0.24374299, 0.25433995]])
- z_scale_alpha_United States(chain, draw)float640.2781 0.05996 ... 0.07085 0.1986
array([[0.27805843, 0.05995524, 0.09545307, ..., 0.08129427, 0.13309833, 0.11127608], [0.0663578 , 0.04932191, 0.21701084, ..., 0.077368 , 0.05992179, 0.07399188], [0.10565687, 0.08574053, 0.07569111, ..., 0.11796192, 0.10216897, 0.14909703], [0.08916109, 0.09249728, 0.141727 , ..., 0.10454905, 0.07085149, 0.19861092]])
- noise_chol_United States(chain, draw, noise_chol_United States_dim_0)float640.3961 -0.02142 ... 0.03923
array([[[ 3.96101210e-01, -2.14229339e-02, 1.71805163e-01, 2.88551200e-02, -3.00898234e-02, 1.24734102e-01], [ 5.03002570e-01, -1.43405244e-02, 1.63154102e-01, 5.04905115e-02, -2.63637879e-02, 3.02538415e-01], [ 4.04993670e-01, 3.04129759e-02, 2.90241912e-01, 5.31442601e-02, -1.89588203e-02, 1.61462826e-01], ..., [ 2.53086948e-01, -5.78746877e-02, 2.17718052e-01, -1.25685048e-02, -1.17879993e-02, 4.68672641e-02], [ 1.83608671e-01, 2.04228355e-02, 1.46513849e-01, 1.16691629e-02, 2.42975744e-03, 1.02663465e-01], [ 1.37632782e-01, -1.61296916e-02, 2.69887933e-01, 5.19367162e-02, 2.34998753e-02, 2.43429048e-01]], [[ 3.39014250e-01, -1.43225055e-01, 2.47521763e-01, -8.63219548e-02, 1.72502016e-02, 1.20696676e-01], [ 4.61999281e-01, -1.06880397e-01, 2.19037221e-01, -1.53294265e-01, -1.68548360e-01, 3.12962460e-01], [ 1.82627588e-01, -2.72004972e-02, 2.06479878e-01, 3.62971802e-02, 4.38487019e-02, 1.41787948e-01], ... [ 4.75538859e-01, 1.25698626e-03, 1.60342209e-01, 2.38086815e-01, 1.16724900e-01, 4.99531795e-01], [ 4.79690965e-01, -6.31750907e-03, 1.52214873e-01, 2.48485977e-01, 1.27297589e-01, 3.53743305e-01], [ 5.48080699e-01, -2.28229355e-03, 1.23535355e-01, -1.00901044e-02, 2.00580588e-02, 1.92498698e-01]], [[ 3.58773908e-01, -6.12252628e-02, 2.41452951e-01, 1.47961304e-02, -1.48080351e-02, 7.77483716e-02], [ 5.36307260e-01, -7.16324745e-02, 2.83227906e-01, -4.25654389e-03, 1.64294962e-02, 8.98516510e-02], [ 4.56463393e-01, -4.11304643e-02, 4.90980148e-01, 9.77820024e-03, -1.82103534e-02, 1.15329317e-01], ..., [ 2.48958959e-01, 2.75594740e-02, 3.03903081e-01, 1.03640678e-03, 4.39198702e-03, 5.59877989e-02], [ 1.78786256e-01, -1.96203168e-02, 2.30191909e-01, -1.98062886e-03, -3.28251407e-03, 3.22106727e-02], [ 2.36709720e-01, -1.73959531e-02, 2.35395996e-01, 8.15216826e-03, -1.51576124e-02, 3.92320180e-02]]])
- omega_global_corr(chain, draw, omega_global_corr_dim_0, omega_global_corr_dim_1)float641.0 0.9758 0.9179 ... 0.8284 1.0
array([[[[1. , 0.97584357, 0.91786403], [0.97584357, 1. , 0.88564027], [0.91786403, 0.88564027, 1. ]], [[1. , 0.97406397, 0.92172696], [0.97406397, 1. , 0.86207108], [0.92172696, 0.86207108, 1. ]], [[1. , 0.99057811, 0.94750053], [0.99057811, 1. , 0.92594331], [0.94750053, 0.92594331, 1. ]], ..., [[1. , 0.9822147 , 0.89417307], [0.9822147 , 1. , 0.86942173], [0.89417307, 0.86942173, 1. ]], [[1. , 0.98626896, 0.82152949], [0.98626896, 1. , 0.79452495], ... [0.98561225, 1. , 0.84898728], [0.87442717, 0.84898728, 1. ]], [[1. , 0.99838982, 0.88369556], [0.99838982, 1. , 0.88125579], [0.88369556, 0.88125579, 1. ]], ..., [[1. , 0.98748604, 0.91956421], [0.98748604, 1. , 0.88196208], [0.91956421, 0.88196208, 1. ]], [[1. , 0.99227684, 0.90690012], [0.99227684, 1. , 0.87746611], [0.90690012, 0.87746611, 1. ]], [[1. , 0.97830934, 0.88055348], [0.97830934, 1. , 0.82838574], [0.88055348, 0.82838574, 1. ]]]])
- omega_global_stds(chain, draw, omega_global_stds_dim_0)float640.01219 0.0156 ... 0.01422 0.04844
array([[[0.01218822, 0.0156033 , 0.04723232], [0.01083866, 0.01546581, 0.05127907], [0.01259793, 0.01521268, 0.04410727], ..., [0.01538368, 0.01430131, 0.05072532], [0.01742328, 0.01427676, 0.04982718], [0.01750076, 0.01530433, 0.05420601]], [[0.0096274 , 0.01486003, 0.04766759], [0.00911955, 0.01471251, 0.04570305], [0.01766926, 0.01352269, 0.04792088], ..., [0.01479791, 0.01377459, 0.04464239], [0.01378923, 0.01407682, 0.04411417], [0.01440868, 0.01338876, 0.04470281]], [[0.01858746, 0.01842537, 0.05731224], [0.01665598, 0.01728827, 0.05177552], [0.01536784, 0.01485824, 0.05005355], ..., [0.01309073, 0.01649988, 0.04592084], [0.0131297 , 0.01630005, 0.04572872], [0.00700433, 0.01726962, 0.05222457]], [[0.01657584, 0.0162293 , 0.04917841], [0.01429305, 0.01703056, 0.05451429], [0.01566869, 0.0154742 , 0.04950871], ..., [0.01586844, 0.01345838, 0.04789947], [0.01742985, 0.01462649, 0.04869647], [0.01696835, 0.01422226, 0.04843869]]])
- betaX_Australia(chain, draw, betaX_Australia_dim_0, betaX_Australia_dim_1)float640.006457 0.006665 ... 0.001335
array([[[[ 6.45673426e-03, 6.66495929e-03, 9.63041308e-03], [ 6.16520826e-03, 5.35006929e-03, 7.47274676e-03], [ 6.20528768e-03, 7.28459069e-03, 8.09003561e-03], ..., [ 5.34834939e-03, 5.30224650e-03, 5.12230411e-03], [ 3.17715424e-03, 3.72264068e-03, 7.71014433e-03], [ 2.40968783e-03, -1.10769314e-04, 3.79703453e-03]], [[ 5.62247168e-03, 8.22585752e-03, 7.41526458e-03], [ 6.81212894e-03, 8.59259114e-03, 6.96929263e-03], [ 6.85824713e-03, 9.71421306e-03, 7.80050163e-03], ..., [ 5.27977559e-03, 7.12763087e-03, 7.85077320e-03], [ 2.26854670e-03, 4.17898849e-03, 1.99233690e-03], [ 6.99576361e-04, 8.41475757e-04, 3.12093505e-03]], [[ 6.03583532e-03, 8.91936376e-03, 8.55984040e-03], [ 6.28650722e-03, 9.56265653e-03, 7.12959851e-03], [ 6.99959099e-03, 1.08125186e-02, 8.21668424e-03], ..., ... ..., [ 2.38122422e-04, 7.08644246e-03, -3.15206342e-04], [ 1.90243108e-05, 7.41842090e-03, -8.50312926e-04], [ 2.38167305e-03, 2.04661747e-03, 3.32965871e-04]], [[-6.64125571e-04, 8.97977715e-03, -2.64531910e-03], [-1.04763537e-03, 8.47060066e-03, -1.53199568e-03], [-1.59438755e-03, 9.94896541e-03, -3.01275733e-03], ..., [-4.95738576e-04, 6.66240537e-03, -1.65050538e-03], [-4.20453564e-04, 5.68659459e-03, -1.80702263e-03], [ 2.19041506e-03, 1.42714757e-03, 9.97837296e-04]], [[ 4.91271171e-03, 7.32782997e-03, -9.03573280e-04], [ 4.09813289e-03, 6.55476026e-03, 1.86820033e-04], [ 3.98572968e-03, 7.12591868e-03, -6.45143885e-04], ..., [ 2.01519705e-03, 4.86064939e-03, 1.38575206e-03], [ 4.92548971e-03, 5.14889911e-03, -2.53475447e-03], [ 2.97291555e-03, 2.73004850e-03, 1.33470356e-03]]]])
- noise_chol_Australia_corr(chain, draw, noise_chol_Australia_corr_dim_0, noise_chol_Australia_corr_dim_1)float641.0 -0.54 0.2005 ... 0.08377 1.0
array([[[[ 1. , -0.53997105, 0.20050768], [-0.53997105, 1. , -0.28020889], [ 0.20050768, -0.28020889, 1. ]], [[ 1. , -0.50379035, -0.09321638], [-0.50379035, 1. , 0.42466479], [-0.09321638, 0.42466479, 1. ]], [[ 1. , -0.44878606, 0.02712636], [-0.44878606, 1. , 0.14684738], [ 0.02712636, 0.14684738, 1. ]], ..., [[ 1. , -0.25046026, -0.00149379], [-0.25046026, 1. , 0.02489161], [-0.00149379, 0.02489161, 1. ]], [[ 1. , -0.54017118, -0.00869237], [-0.54017118, 1. , 0.15238841], ... [-0.63981809, 1. , 0.3501592 ], [-0.34526059, 0.3501592 , 1. ]], [[ 1. , -0.4611995 , 0.11083429], [-0.4611995 , 1. , 0.06250126], [ 0.11083429, 0.06250126, 1. ]], ..., [[ 1. , -0.22836937, 0.18742943], [-0.22836937, 1. , -0.1040565 ], [ 0.18742943, -0.1040565 , 1. ]], [[ 1. , -0.30795064, 0.16498622], [-0.30795064, 1. , -0.01919837], [ 0.16498622, -0.01919837, 1. ]], [[ 1. , -0.61568092, 0.23139218], [-0.61568092, 1. , 0.08377404], [ 0.23139218, 0.08377404, 1. ]]]])
- noise_chol_Australia_stds(chain, draw, noise_chol_Australia_stds_dim_0)float640.175 0.4481 ... 0.3137 0.5729
array([[[0.17500906, 0.44811006, 0.77881443], [0.32728677, 0.41040809, 0.94232891], [0.20737679, 0.4606506 , 0.95026555], ..., [0.0245075 , 0.40449207, 0.54958963], [0.08913057, 0.42739427, 0.34271204], [0.02162679, 0.32423213, 0.49410947]], [[0.18095635, 0.49858924, 0.80371497], [0.26401751, 0.60012323, 0.94142484], [0.03782971, 0.45779185, 0.79127935], ..., [0.11119029, 0.4450368 , 1.15437778], [0.08891332, 0.42875352, 1.25429922], [0.10683573, 0.45610541, 1.21426033]], [[0.05160502, 0.46142053, 0.82863923], [0.03275265, 0.40948387, 0.89037715], [0.01766209, 0.42345364, 0.59686582], ..., [0.27902307, 0.33740119, 1.19117012], [0.23885451, 0.36891792, 1.11060868], [0.28398386, 0.31559965, 0.79593116]], [[0.03881315, 0.51492137, 1.07699938], [0.05640983, 0.73044501, 0.41342372], [0.0950187 , 0.76513689, 1.14483558], ..., [0.0544019 , 0.38787546, 0.59211677], [0.11939583, 0.46289356, 0.68249328], [0.04304909, 0.31370608, 0.57285215]]])
- omega_Australia(chain, draw, omega_Australia_dim_0, omega_Australia_dim_1)float640.01645 0.0 ... -0.003485 0.03422
array([[[[ 0.01645241, 0. , 0. ], [ 0.00849064, 0.01319737, 0. ], [ 0.04630716, -0.00628284, 0.0376755 ]], [[ 0.01776509, 0. , 0. ], [ 0.01020939, 0.01118267, 0. ], [ 0.0443081 , 0.00109399, 0.03621514]], [[ 0.01704101, 0. , 0. ], [ 0.01000982, 0.01142607, 0. ], [ 0.04142636, -0.00011768, 0.03451845]], ..., [[ 0.01563076, 0. , 0. ], [ 0.01092309, 0.0132171 , 0. ], [ 0.0441067 , -0.00194878, 0.03685126]], [[ 0.0193523 , 0. , 0. ], [ 0.00749132, 0.01197011, 0. ], ... [ 0.00827159, 0.01269999, 0. ], [ 0.04432031, -0.00285162, 0.03237427]], [[ 0.01694401, 0. , 0. ], [ 0.00952946, 0.01177505, 0. ], [ 0.0450868 , 0.00148287, 0.04091808]], ..., [[ 0.01688243, 0. , 0. ], [ 0.01060932, 0.0120037 , 0. ], [ 0.04580797, -0.00869739, 0.03189607]], [[ 0.02005698, 0. , 0. ], [ 0.01046687, 0.0131143 , 0. ], [ 0.04592615, -0.00799437, 0.03538846]], [[ 0.01761159, 0. , 0. ], [ 0.00880706, 0.00897023, 0. ], [ 0.04487011, -0.00348537, 0.03421569]]]])
- betaX_Canada(chain, draw, betaX_Canada_dim_0, betaX_Canada_dim_1)float640.01247 0.003499 ... -0.004845
array([[[[ 1.24700229e-02, 3.49888035e-03, 3.17631156e-03], [ 1.49572516e-02, 4.59849318e-03, 5.23948172e-03], [ 1.11409290e-02, 3.40311576e-03, 2.78466775e-03], ..., [ 9.42362534e-03, 3.02113378e-03, 4.26624859e-03], [ 6.09631303e-03, 2.33500972e-03, 3.17155501e-03], [-9.81937900e-03, -1.93179353e-03, -4.02832249e-03]], [[ 5.55326597e-03, 1.00136700e-02, 1.04013746e-02], [ 6.92007696e-03, 1.27153046e-02, 1.17002176e-02], [ 7.35928121e-03, 1.19274704e-02, 1.12212105e-02], ..., [ 4.08314668e-03, 8.75353028e-03, 6.65613365e-03], [ 2.43987976e-03, 5.95342126e-03, 4.05159400e-03], [ 1.05279891e-03, -2.47692220e-03, -3.40605712e-03]], [[ 7.65554518e-03, 5.41194263e-03, 9.54488372e-03], [ 9.15665658e-03, 6.88104456e-03, 1.11121618e-02], [ 6.89955222e-03, 7.08948466e-03, 9.77147290e-03], ..., ... ..., [ 2.45715187e-03, 5.19941214e-03, 4.34379533e-03], [ 1.35074050e-03, 4.05808015e-03, 3.73484744e-03], [-1.89123017e-03, 2.17836673e-03, -2.97893739e-04]], [[ 1.53180566e-03, 5.08215787e-03, 5.05360333e-03], [ 7.44626869e-04, 6.60363132e-03, 6.56758081e-03], [-2.40149387e-04, 7.51450347e-03, 5.22763736e-03], ..., [-3.34373481e-04, 5.14172725e-03, 4.62906142e-03], [-4.91254186e-04, 4.10078261e-03, 3.98687062e-03], [-3.50396455e-03, 3.47348333e-03, -9.08573735e-04]], [[ 5.34685825e-03, 1.25850786e-03, 5.32328941e-03], [ 5.91432977e-03, 1.19781114e-03, 7.31923031e-03], [ 6.34408641e-03, 1.90335124e-03, 5.12804004e-03], ..., [ 3.64558827e-03, 1.23370266e-03, 5.24797956e-03], [ 2.29374113e-03, 9.70973007e-04, 3.79256349e-03], [-2.35460757e-03, 8.93351321e-04, -4.84480591e-03]]]])
- noise_chol_Canada_corr(chain, draw, noise_chol_Canada_corr_dim_0, noise_chol_Canada_corr_dim_1)float641.0 0.1933 -0.2897 ... 0.07205 1.0
array([[[[ 1. , 0.19328004, -0.28966389], [ 0.19328004, 1. , 0.05903915], [-0.28966389, 0.05903915, 1. ]], [[ 1. , -0.14078658, -0.3333484 ], [-0.14078658, 1. , 0.00109628], [-0.3333484 , 0.00109628, 1. ]], [[ 1. , -0.17240732, -0.14634189], [-0.17240732, 1. , 0.14518812], [-0.14634189, 0.14518812, 1. ]], ..., [[ 1. , 0.10648015, 0.03994961], [ 0.10648015, 1. , -0.11973097], [ 0.03994961, -0.11973097, 1. ]], [[ 1. , 0.09151256, -0.13585816], [ 0.09151256, 1. , -0.00133437], ... [-0.14063703, 1. , -0.28907142], [-0.24782725, -0.28907142, 1. ]], [[ 1. , -0.31655828, -0.25260422], [-0.31655828, 1. , -0.11332257], [-0.25260422, -0.11332257, 1. ]], ..., [[ 1. , 0.18083947, 0.13559932], [ 0.18083947, 1. , -0.02197691], [ 0.13559932, -0.02197691, 1. ]], [[ 1. , 0.12001937, 0.49667666], [ 0.12001937, 1. , -0.06958886], [ 0.49667666, -0.06958886, 1. ]], [[ 1. , 0.41050003, 0.22813931], [ 0.41050003, 1. , 0.07204544], [ 0.22813931, 0.07204544, 1. ]]]])
- noise_chol_Canada_stds(chain, draw, noise_chol_Canada_stds_dim_0)float640.6638 0.2085 ... 0.2936 1.213
array([[[0.66384179, 0.20848881, 1.07124732], [0.67223062, 0.33682297, 0.91232871], [0.45749913, 0.32345847, 0.70680997], ..., [0.23020835, 0.25749084, 0.50378472], [0.58347185, 0.27866043, 0.53718941], [0.18709708, 0.28383023, 0.13075696]], [[0.68952306, 0.38286238, 0.87263223], [0.55548121, 0.46889733, 0.80054282], [0.4537614 , 0.50888115, 0.86099929], ..., [0.34183028, 0.34435015, 1.81518733], [0.32059482, 0.41286674, 1.11077189], [0.3560867 , 0.40310915, 1.57082235]], [[0.24603132, 0.31396591, 0.69534941], [0.22170782, 0.28096809, 1.12813663], [0.43843064, 0.24032078, 0.673225 ], ..., [0.48539611, 0.23639078, 1.13485029], [0.34601336, 0.19702292, 1.21354531], [0.87289064, 0.21110788, 0.61522443]], [[0.54622309, 0.43593431, 0.28842257], [0.65717069, 0.46764966, 1.19080717], [0.27563122, 0.54788095, 1.05204099], ..., [0.4678951 , 0.30428817, 0.70838538], [0.60572859, 0.28596595, 0.530754 ], [0.35621336, 0.29360534, 1.21302601]]])
- omega_Canada(chain, draw, omega_Canada_dim_0, omega_Canada_dim_1)float640.02925 0.0 ... -0.008251 0.0502
array([[[[ 2.92546585e-02, 0.00000000e+00, 0.00000000e+00], [ 1.58829560e-02, 8.67682572e-03, 0.00000000e+00], [ 3.40908404e-02, 1.17293320e-03, 4.47826285e-02]], [[ 2.53152303e-02, 0.00000000e+00, 0.00000000e+00], [ 1.36970189e-02, 1.07218602e-02, 0.00000000e+00], [ 3.95740937e-02, -8.84898064e-03, 3.65696665e-02]], [[ 2.27465270e-02, 0.00000000e+00, 0.00000000e+00], [ 1.34535147e-02, 9.30373197e-03, 0.00000000e+00], [ 3.84788893e-02, -2.01148218e-03, 2.90241723e-02]], ..., [[ 2.12011736e-02, 0.00000000e+00, 0.00000000e+00], [ 1.44090336e-02, 9.54577122e-03, 0.00000000e+00], [ 4.46739461e-02, -4.02683003e-03, 3.54981952e-02]], [[ 3.26507622e-02, 0.00000000e+00, 0.00000000e+00], [ 1.43879430e-02, 9.75922918e-03, 0.00000000e+00], ... [ 1.53337409e-02, 1.09701702e-02, 0.00000000e+00], [ 4.16406670e-02, -1.09259006e-02, 4.47574983e-02]], [[ 1.98468252e-02, 0.00000000e+00, 0.00000000e+00], [ 1.24135044e-02, 9.21640803e-03, 0.00000000e+00], [ 3.87763130e-02, -4.31859096e-03, 3.87772103e-02]], ..., [[ 2.77633495e-02, 0.00000000e+00, 0.00000000e+00], [ 1.43882668e-02, 9.94183087e-03, 0.00000000e+00], [ 4.54152589e-02, -8.59838307e-03, 3.50699796e-02]], [[ 3.25872062e-02, 0.00000000e+00, 0.00000000e+00], [ 1.50238703e-02, 9.08214401e-03, 0.00000000e+00], [ 4.98169093e-02, -1.03582216e-02, 2.97896361e-02]], [[ 2.53352789e-02, 0.00000000e+00, 0.00000000e+00], [ 1.65431644e-02, 9.47652540e-03, 0.00000000e+00], [ 4.84262120e-02, -8.25059215e-03, 5.02025697e-02]]]])
- betaX_Chile(chain, draw, betaX_Chile_dim_0, betaX_Chile_dim_1)float640.003003 0.006249 ... -0.00412
array([[[[ 3.00269072e-03, 6.24872689e-03, -9.55016990e-03], [-1.45623997e-02, -1.55714871e-02, -1.23016029e-02], [-1.15056639e-02, -4.98474488e-03, 1.00142545e-03], ..., [ 4.40286270e-03, 4.21659692e-03, 1.41303914e-02], [ 5.24313848e-03, 7.20257637e-03, 1.33433018e-02], [-7.25214830e-03, -3.39585308e-03, -1.63731319e-02]], [[ 1.27507817e-03, -4.89803702e-03, 1.92256262e-02], [-1.83711084e-02, -3.44935006e-02, 2.77951318e-03], [-6.24431318e-03, -1.60618990e-02, -6.40851652e-03], ..., [-9.03231703e-04, 1.08382348e-03, 3.30209617e-03], [ 5.27233353e-03, 8.86824000e-03, -1.15353010e-03], [ 1.16659387e-03, -5.20195709e-03, -1.38509917e-03]], [[ 9.89307608e-03, -5.74165359e-03, 7.91040108e-03], [-1.67669462e-02, -2.86250498e-02, 1.03911369e-02], [-1.51037867e-02, -1.20229355e-02, 9.08907897e-04], ..., ... ..., [-3.17410948e-07, 2.70798475e-03, -3.10499155e-03], [ 4.83756910e-03, 8.73702776e-03, -1.32916332e-03], [ 2.82261443e-04, -4.07766714e-03, 2.72946005e-03]], [[-1.05686768e-02, -2.80749013e-04, -1.03762948e-02], [-1.13119168e-02, -1.58087903e-02, -9.68889878e-03], [ 4.31255971e-03, -4.63753719e-03, -7.59437674e-05], ..., [ 4.49659370e-04, 2.87217458e-03, -1.86698162e-03], [ 3.82583331e-03, 8.99343334e-03, 1.06381035e-03], [-1.51498565e-03, -1.39370685e-03, -7.91374858e-04]], [[-5.77579546e-03, -1.14072896e-02, 2.38413016e-03], [-6.83860672e-03, -2.46730317e-02, -9.11421479e-04], [-1.14180209e-03, 1.08306232e-03, -1.70201083e-03], ..., [ 3.07333793e-03, 1.78565109e-03, 6.40907518e-03], [ 4.86858088e-03, 6.20895393e-03, 7.98444814e-03], [-4.94152216e-03, -5.58138556e-03, -4.11992869e-03]]]])
- noise_chol_Chile_corr(chain, draw, noise_chol_Chile_corr_dim_0, noise_chol_Chile_corr_dim_1)float641.0 0.6129 0.3999 ... 0.5206 1.0
array([[[[1. , 0.61285411, 0.39987636], [0.61285411, 1. , 0.09210604], [0.39987636, 0.09210604, 1. ]], [[1. , 0.50058186, 0.63135693], [0.50058186, 1. , 0.36835608], [0.63135693, 0.36835608, 1. ]], [[1. , 0.57156141, 0.65836342], [0.57156141, 1. , 0.3644959 ], [0.65836342, 0.3644959 , 1. ]], ..., [[1. , 0.61136954, 0.63824026], [0.61136954, 1. , 0.26365707], [0.63824026, 0.26365707, 1. ]], [[1. , 0.55530727, 0.56335901], [0.55530727, 1. , 0.27030894], ... [0.43938051, 1. , 0.07429358], [0.62810518, 0.07429358, 1. ]], [[1. , 0.63697676, 0.5034427 ], [0.63697676, 1. , 0.39377102], [0.5034427 , 0.39377102, 1. ]], ..., [[1. , 0.50260036, 0.27765771], [0.50260036, 1. , 0.2654174 ], [0.27765771, 0.2654174 , 1. ]], [[1. , 0.59924247, 0.39082225], [0.59924247, 1. , 0.31288678], [0.39082225, 0.31288678, 1. ]], [[1. , 0.59940686, 0.59922862], [0.59940686, 1. , 0.52060502], [0.59922862, 0.52060502, 1. ]]]])
- noise_chol_Chile_stds(chain, draw, noise_chol_Chile_stds_dim_0)float641.271 1.624 3.6 ... 1.68 2.743
array([[[1.2713373 , 1.62414038, 3.59991746], [1.40839471, 1.64880118, 3.31877818], [1.05662488, 1.71732613, 3.42270954], ..., [1.02995934, 1.60248178, 2.69900726], [0.76983079, 1.4651506 , 2.20052647], [0.99565962, 1.60421725, 2.68589717]], [[0.91491713, 1.34253895, 2.2662561 ], [1.54426339, 2.00255192, 2.8945698 ], [1.27900868, 2.17221178, 3.52071618], ..., [0.80886664, 1.52772598, 2.89590313], [0.82952097, 1.32740011, 2.73284552], [0.79969338, 1.26148752, 2.85823385]], [[0.91773985, 1.56062253, 2.79411 ], [1.00685964, 1.2855223 , 2.78101382], [0.93764767, 1.47389141, 2.23833153], ..., [1.24101022, 1.8708186 , 3.69690198], [1.31056705, 1.81169217, 3.36838218], [1.07192233, 1.32214889, 2.47574968]], [[1.29850511, 2.08605599, 3.33642843], [1.52666923, 1.95601462, 3.53240985], [1.5267606 , 2.81179684, 3.85790135], ..., [0.87863276, 1.72022698, 2.82345444], [1.00752757, 1.40806588, 2.55055337], [0.84373496, 1.68048138, 2.74291593]]])
- omega_Chile(chain, draw, omega_Chile_dim_0, omega_Chile_dim_1)float640.04516 0.0 0.0 ... 0.006101 0.0735
array([[[[ 0.04516462, 0. , 0. ], [ 0.04089555, 0.03693081, 0. ], [ 0.07991772, -0.02036609, 0.10259708]], [[ 0.04142842, 0. , 0. ], [ 0.03280046, 0.03466477, 0. ], [ 0.0920935 , -0.00353505, 0.07392714]], [[ 0.03641313, 0. , 0. ], [ 0.03711581, 0.03418023, 0. ], [ 0.09224015, -0.00509764, 0.07195252]], ..., [[ 0.04285858, 0. , 0. ], [ 0.04019725, 0.03695334, 0. ], [ 0.09077766, -0.01401341, 0.07701291]], [[ 0.03766407, 0. , 0. ], [ 0.03558912, 0.03507327, 0. ], ... [ 0.03160417, 0.03372773, 0. ], [ 0.08584851, -0.01802142, 0.07194311]], [[ 0.03995506, 0. , 0. ], [ 0.04398685, 0.03570095, 0. ], [ 0.07426316, 0.0050056 , 0.07603408]], ..., [[ 0.03857175, 0. , 0. ], [ 0.03569151, 0.0412009 , 0. ], [ 0.06351702, 0.00310009, 0.0871746 ]], [[ 0.04293945, 0. , 0. ], [ 0.03587916, 0.0308109 , 0. ], [ 0.0687076 , -0.00211939, 0.07819696]], [[ 0.03735921, 0. , 0. ], [ 0.03841383, 0.03604897, 0. ], [ 0.08213845, 0.00610096, 0.07349513]]]])
- betaX_Ireland(chain, draw, betaX_Ireland_dim_0, betaX_Ireland_dim_1)float640.01648 0.01726 ... -0.02733
array([[[[ 1.64836620e-02, 1.72578353e-02, 1.64182659e-02], [ 2.43504450e-02, 1.84689416e-02, 2.00754020e-02], [ 7.33619607e-03, 1.19017325e-02, 1.36770851e-02], ..., [-5.87607967e-04, 3.44866967e-03, 1.11521468e-02], [ 5.30266531e-02, 2.36051004e-02, 2.24552156e-02], [ 2.51764667e-02, 4.21411050e-02, 2.89011406e-02]], [[ 7.82774644e-03, 1.64443423e-02, 2.36731975e-02], [ 1.12804312e-02, 1.05602182e-02, 3.44037527e-02], [ 1.07559303e-02, 2.75232881e-02, 1.71403673e-03], ..., [-4.51099742e-03, 1.96146605e-02, 5.70295261e-03], [ 1.80841877e-02, -3.41386122e-02, 8.59956360e-02], [ 5.61955592e-02, 6.12612971e-02, -6.26802772e-03]], [[ 1.74751828e-02, 2.86672623e-02, 1.74833159e-02], [ 1.88330456e-02, 2.82139302e-02, 2.75691533e-02], [ 1.47183887e-02, 3.21766449e-02, -1.83083612e-02], ..., ... ..., [-9.91041283e-03, 1.85968541e-02, 6.60602392e-03], [ 1.13933117e-02, 2.35398549e-03, -1.07360996e-02], [ 4.99000324e-02, 7.04399668e-02, -7.62368101e-02]], [[ 6.18025714e-04, 1.83210873e-02, 6.20114060e-03], [ 4.27276181e-03, 1.68986884e-02, 6.71994714e-03], [ 7.43417339e-04, 2.81270925e-02, 4.19910060e-03], ..., [-1.38228245e-02, 1.97494034e-02, 1.53752579e-02], [ 1.83463571e-02, -2.04016832e-02, 8.62400171e-03], [ 4.52241270e-02, 5.87861112e-02, -3.03262169e-02]], [[ 7.46063846e-03, 2.43506583e-02, -5.49236629e-03], [ 7.99655643e-03, 1.88982657e-02, -5.19542351e-03], [ 5.77313098e-03, 3.52912201e-02, -4.08544848e-03], ..., [-1.18675129e-02, 2.35309218e-02, -2.47016723e-03], [ 1.33567965e-02, -2.49183450e-02, 1.01166132e-03], [ 6.59684494e-02, 8.88266272e-02, -2.73254140e-02]]]])
- noise_chol_Ireland_corr(chain, draw, noise_chol_Ireland_corr_dim_0, noise_chol_Ireland_corr_dim_1)float641.0 0.03333 0.2175 ... 0.2948 1.0
array([[[[ 1.00000000e+00, 3.33342673e-02, 2.17495962e-01], [ 3.33342673e-02, 1.00000000e+00, 1.50420841e-01], [ 2.17495962e-01, 1.50420841e-01, 1.00000000e+00]], [[ 1.00000000e+00, -2.59961345e-01, -1.83604558e-01], [-2.59961345e-01, 1.00000000e+00, 5.43763057e-01], [-1.83604558e-01, 5.43763057e-01, 1.00000000e+00]], [[ 1.00000000e+00, -2.24535655e-01, 2.27162374e-02], [-2.24535655e-01, 1.00000000e+00, 3.68930801e-01], [ 2.27162374e-02, 3.68930801e-01, 1.00000000e+00]], ..., [[ 1.00000000e+00, 7.84638734e-03, 2.52670685e-01], [ 7.84638734e-03, 1.00000000e+00, 2.25266813e-01], [ 2.52670685e-01, 2.25266813e-01, 1.00000000e+00]], [[ 1.00000000e+00, 5.42195183e-02, 1.39904599e-01], [ 5.42195183e-02, 1.00000000e+00, 1.33651491e-01], ... [-2.49106507e-01, 1.00000000e+00, 1.60642213e-01], [ 2.49916275e-01, 1.60642213e-01, 1.00000000e+00]], [[ 1.00000000e+00, 4.35927922e-02, 1.08673539e-02], [ 4.35927922e-02, 1.00000000e+00, 2.08335723e-01], [ 1.08673539e-02, 2.08335723e-01, 1.00000000e+00]], ..., [[ 1.00000000e+00, -1.43199383e-01, 1.28602749e-01], [-1.43199383e-01, 1.00000000e+00, 2.40435719e-01], [ 1.28602749e-01, 2.40435719e-01, 1.00000000e+00]], [[ 1.00000000e+00, -3.92398800e-02, 1.54895511e-01], [-3.92398800e-02, 1.00000000e+00, 3.18864917e-01], [ 1.54895511e-01, 3.18864917e-01, 1.00000000e+00]], [[ 1.00000000e+00, -7.61891204e-02, 8.96321521e-02], [-7.61891204e-02, 1.00000000e+00, 2.94752950e-01], [ 8.96321521e-02, 2.94752950e-01, 1.00000000e+00]]]])
- noise_chol_Ireland_stds(chain, draw, noise_chol_Ireland_stds_dim_0)float641.099 0.889 5.445 ... 0.7554 5.359
array([[[1.09856315, 0.88901252, 5.44525567], [1.07918067, 0.79173747, 6.35467293], [1.24444094, 0.90287933, 6.77229604], ..., [1.11717345, 0.73017693, 4.38263384], [0.79322542, 0.73202497, 5.07505363], [0.79691695, 0.75875025, 4.36341961]], [[1.20283767, 0.54777345, 4.65362658], [1.53763364, 0.75642027, 5.81766776], [1.16328075, 0.93651123, 5.99160043], ..., [1.25065627, 0.71665283, 6.28527513], [1.2169064 , 0.75343536, 5.39141314], [1.17824027, 0.6533815 , 4.65254295]], [[0.75713346, 0.68163394, 4.42842643], [0.70207832, 0.67130676, 5.78454619], [1.0214115 , 0.66706679, 4.34632939], ..., [1.30702197, 0.89851183, 6.58625894], [1.40896661, 0.88093035, 6.78873108], [0.90044203, 0.64658868, 4.13419835]], [[1.18230319, 1.19215547, 6.00616917], [1.6018197 , 1.28117501, 7.68278202], [1.84183924, 1.28813938, 7.38414326], ..., [0.74949096, 0.81424938, 4.41888313], [0.97737268, 0.86168422, 4.74508525], [0.85502325, 0.75541657, 5.35855291]]])
- omega_Ireland(chain, draw, omega_Ireland_dim_0, omega_Ireland_dim_1)float640.04064 0.0 0.0 ... 0.03243 0.1465
array([[[[ 0.04063976, 0. , 0. ], [ 0.01560372, 0.02658937, 0. ], [ 0.07323416, 0.0183125 , 0.15581926]], [[ 0.03422257, 0. , 0. ], [ 0.01022993, 0.02015667, 0. ], [ 0.02069296, 0.06352592, 0.13433755]], [[ 0.04069738, 0. , 0. ], [ 0.01010118, 0.02210544, 0. ], [ 0.04434761, 0.05532029, 0.15580224]], ..., [[ 0.04522035, 0. , 0. ], [ 0.01382171, 0.02238523, 0. ], [ 0.07411653, 0.02417507, 0.13370487]], [[ 0.03829342, 0. , 0. ], [ 0.01476965, 0.02195785, 0. ], ... [ 0.01087785, 0.02464814, 0. ], [ 0.08059611, 0.0270211 , 0.1527325 ]], [[ 0.04501903, 0. , 0. ], [ 0.01610349, 0.02154706, 0. ], [ 0.04433719, 0.02381899, 0.13885813]], ..., [[ 0.03517344, 0. , 0. ], [ 0.00987196, 0.02327246, 0. ], [ 0.05784165, 0.02269594, 0.12785515]], [[ 0.04216251, 0. , 0. ], [ 0.01326842, 0.02395153, 0. ], [ 0.06196187, 0.0311782 , 0.13210447]], [[ 0.03763762, 0. , 0. ], [ 0.01215112, 0.02145044, 0. ], [ 0.05344668, 0.03243153, 0.1464945 ]]]])
- betaX_New Zealand(chain, draw, betaX_New Zealand_dim_0, betaX_New Zealand_dim_1)float64-0.001764 0.001355 ... -0.001023
array([[[[-1.76372364e-03, 1.35525819e-03, 2.02611146e-03], [ 1.76226292e-03, -1.40595699e-03, -7.01848911e-04], [ 6.77369237e-03, 9.44922545e-03, 7.84322633e-03], ..., [ 7.25825653e-03, 1.47405243e-02, 9.98505146e-03], [ 6.96508463e-03, 1.52436204e-02, 1.07166853e-02], [ 5.39886989e-03, 1.24515738e-02, 8.74174581e-03]], [[-7.33507167e-04, -1.98169808e-03, -5.63322918e-03], [ 5.34343160e-03, 1.49920196e-03, 4.23808747e-03], [ 1.00199291e-02, 1.06386052e-02, 1.78459333e-02], ..., [ 6.39741247e-03, 1.02239745e-02, 1.15700503e-02], [ 4.58740417e-03, 1.02182004e-02, 1.05329555e-02], [ 2.88523371e-03, 7.76261089e-03, 7.10482735e-03]], [[-3.29875020e-03, -3.50267944e-03, -4.86952563e-04], [ 7.27952619e-03, 7.06963951e-04, -5.50758663e-03], [ 1.58605090e-02, 1.32553477e-02, 7.81357852e-03], ..., ... ..., [ 3.10420929e-03, 7.87559969e-03, 7.96009257e-03], [ 2.86378859e-03, 8.30486587e-03, 6.22048805e-03], [ 1.63544841e-03, 6.62238454e-03, 4.42948689e-03]], [[-1.30996446e-03, 1.55487298e-03, -2.08606111e-03], [ 1.73072691e-03, -1.71345519e-03, 5.93278825e-03], [ 6.49868797e-03, 8.14610668e-03, 7.72636310e-03], ..., [ 1.57982970e-03, 1.00528358e-02, 4.64339627e-03], [ 1.46055332e-03, 1.11614280e-02, 2.42898064e-03], [ 2.51884702e-04, 9.01327227e-03, 1.40423677e-03]], [[-1.66947133e-03, 4.49148200e-03, 7.98465719e-06], [ 2.45136274e-03, -1.83504208e-03, 1.50542664e-03], [ 2.43912078e-03, 1.75038892e-03, -1.34805785e-03], ..., [ 1.25911370e-03, 6.16133924e-03, 1.04761826e-04], [ 8.44121536e-04, 6.76096491e-03, -1.54309646e-03], [ 2.94218980e-04, 6.08009144e-03, -1.02344794e-03]]]])
- noise_chol_New Zealand_corr(chain, draw, noise_chol_New Zealand_corr_dim_0, noise_chol_New Zealand_corr_dim_1)float641.0 -0.261 0.1799 ... 0.1502 1.0
array([[[[ 1. , -0.26103948, 0.1799095 ], [-0.26103948, 1. , 0.18151346], [ 0.1799095 , 0.18151346, 1. ]], [[ 1. , -0.08742612, 0.11463748], [-0.08742612, 1. , -0.2364093 ], [ 0.11463748, -0.2364093 , 1. ]], [[ 1. , -0.28301592, 0.00105696], [-0.28301592, 1. , -0.2199193 ], [ 0.00105696, -0.2199193 , 1. ]], ..., [[ 1. , -0.20290854, 0.05859711], [-0.20290854, 1. , -0.01508477], [ 0.05859711, -0.01508477, 1. ]], [[ 1. , 0.01844096, 0.35830256], [ 0.01844096, 1. , -0.07586697], ... [-0.37043066, 1. , 0.28849878], [ 0.29637054, 0.28849878, 1. ]], [[ 1. , -0.43535589, 0.00774529], [-0.43535589, 1. , -0.15615354], [ 0.00774529, -0.15615354, 1. ]], ..., [[ 1. , -0.41551535, 0.33174242], [-0.41551535, 1. , 0.04805351], [ 0.33174242, 0.04805351, 1. ]], [[ 1. , -0.25748007, 0.27593397], [-0.25748007, 1. , 0.13310236], [ 0.27593397, 0.13310236, 1. ]], [[ 1. , -0.19664719, 0.36554005], [-0.19664719, 1. , 0.150203 ], [ 0.36554005, 0.150203 , 1. ]]]])
- noise_chol_New Zealand_stds(chain, draw, noise_chol_New Zealand_stds_dim_0)float640.3045 0.2385 1.12 ... 0.4065 1.071
array([[[3.04534370e-01, 2.38521201e-01, 1.12038400e+00], [3.82169968e-01, 4.65253294e-01, 1.29437459e+00], [2.55826468e-01, 3.67222498e-01, 1.37690664e+00], ..., [2.05796473e-01, 2.78469568e-01, 1.01595357e+00], [4.82275138e-02, 3.52312849e-01, 8.60660486e-01], [9.96422216e-02, 3.18282233e-01, 7.08427063e-01]], [[2.96598158e-01, 2.81750195e-01, 1.23858942e+00], [3.68460688e-01, 2.85802825e-01, 1.58625384e+00], [2.66135207e-02, 3.33540996e-01, 1.48833319e+00], ..., [2.42703239e-01, 4.22863294e-01, 1.62550222e+00], [1.68752066e-01, 4.14486419e-01, 1.42264760e+00], [2.26454537e-01, 4.29511347e-01, 1.29795254e+00]], [[1.00180477e-01, 4.77008616e-01, 7.48245655e-01], [1.34293327e-01, 3.61395761e-01, 9.26934975e-01], [4.37944414e-02, 4.28662914e-01, 9.59362065e-01], ..., [3.26785762e-01, 3.03852946e-01, 1.32595851e+00], [2.97884495e-01, 3.53191395e-01, 1.37299126e+00], [3.22936817e-01, 3.53322178e-01, 1.03226229e+00]], [[1.13775785e-01, 4.77763837e-01, 9.55470465e-01], [1.42230904e-01, 4.41212942e-01, 9.87938056e-01], [7.12239451e-02, 6.48104937e-01, 1.15193371e+00], ..., [3.32437466e-03, 3.30767916e-01, 1.49072766e+00], [3.17245931e-03, 3.10529148e-01, 1.13832807e+00], [1.14414877e-03, 4.06543350e-01, 1.07140500e+00]]])
- omega_New Zealand(chain, draw, omega_New Zealand_dim_0, omega_New Zealand_dim_1)float640.01984 0.0 ... -0.001556 0.04494
array([[[[ 0.0198446 , 0. , 0. ], [ 0.01319696, 0.00934973, 0. ], [ 0.04749641, 0.00482864, 0.04614774]], [[ 0.01896637, 0. , 0. ], [ 0.01384465, 0.01356738, 0. ], [ 0.04947859, -0.01436299, 0.04516365]], [[ 0.01814619, 0. , 0. ], [ 0.01235487, 0.01007004, 0. ], [ 0.04087155, -0.01116694, 0.04377006]], ..., [[ 0.0205401 , 0. , 0. ], [ 0.01213642, 0.00999665, 0. ], [ 0.04574107, -0.00241545, 0.04943785]], [[ 0.01825196, 0. , 0. ], [ 0.01387671, 0.01177042, 0. ], ... [ 0.01361614, 0.01003502, 0. ], [ 0.05197953, 0.00337521, 0.04048826]], [[ 0.01656158, 0. , 0. ], [ 0.01066615, 0.01024111, 0. ], [ 0.04319086, -0.0040152 , 0.04102882]], ..., [[ 0.01553835, 0. , 0. ], [ 0.00932359, 0.00998369, 0. ], [ 0.05590114, 0.00030017, 0.05274987]], [[ 0.01706251, 0. , 0. ], [ 0.01207957, 0.00949851, 0. ], [ 0.05111778, -0.00238222, 0.04555566]], [[ 0.01657807, 0. , 0. ], [ 0.01159888, 0.01270442, 0. ], [ 0.0512601 , -0.00155637, 0.04493924]]]])
- betaX_South Africa(chain, draw, betaX_South Africa_dim_0, betaX_South Africa_dim_1)float640.004925 0.01035 ... -0.002743
array([[[[ 4.92477337e-03, 1.03488014e-02, 1.67717620e-02], [ 4.32435160e-03, 3.91730303e-03, 2.67024819e-02], [ 5.85941669e-03, 6.08892086e-03, 2.71249215e-02], ..., [ 2.00654636e-03, 2.83766727e-04, 5.68007915e-03], [ 2.14998996e-03, 2.16766524e-03, 2.38793085e-03], [ 2.76682380e-03, 4.27981426e-03, -3.05339838e-02]], [[-4.97662591e-04, 7.41471039e-03, 6.69020614e-03], [ 1.16834788e-03, 9.77819530e-03, 4.29382253e-03], [ 1.79620485e-03, 1.38927964e-02, 8.00042377e-03], ..., [-4.88999869e-04, 4.77078413e-03, -1.05815533e-03], [-1.16997372e-03, 3.69873336e-03, -1.39553035e-03], [-9.53720437e-03, -5.05125885e-03, -1.18212411e-02]], [[ 1.71251393e-03, 7.07095518e-03, 6.18888899e-03], [ 3.40542884e-04, 5.58770770e-03, 7.12103121e-03], [ 8.01976717e-04, 8.98069910e-03, 8.92572794e-03], ..., ... ..., [ 1.15226380e-03, 1.91149281e-03, -4.87228787e-04], [ 1.64967287e-03, 2.09344683e-03, -2.42887920e-03], [ 8.08280694e-03, 4.38379543e-03, -2.61536007e-02]], [[ 3.51350470e-03, 5.16306728e-03, 1.14478061e-02], [ 3.32474240e-03, 4.46254142e-03, 1.24576395e-02], [ 4.36563776e-03, 6.23398176e-03, 1.55351359e-02], ..., [ 1.98228326e-03, 2.71357226e-03, 5.54662649e-04], [ 2.03929097e-03, 3.03869428e-03, -7.55485240e-04], [ 3.60510920e-03, 3.55289045e-03, -2.17092809e-02]], [[ 2.11524685e-03, 7.40829954e-03, 5.40311009e-03], [-1.12407675e-03, 4.43711011e-03, 4.67768445e-03], [ 5.60675386e-04, 4.52186968e-03, 4.46295420e-03], ..., [ 1.26343689e-03, -1.79230279e-05, -5.60797573e-04], [ 2.33385298e-03, 4.07356663e-04, -5.71025786e-04], [ 9.04329474e-03, 2.78928006e-03, -2.74255936e-03]]]])
- noise_chol_South Africa_corr(chain, draw, noise_chol_South Africa_corr_dim_0, noise_chol_South Africa_corr_dim_1)float641.0 0.3134 0.3718 ... 0.3246 1.0
array([[[[ 1. , 0.31340689, 0.37177584], [ 0.31340689, 1. , 0.07821922], [ 0.37177584, 0.07821922, 1. ]], [[ 1. , 0.21585394, -0.01498537], [ 0.21585394, 1. , 0.49303792], [-0.01498537, 0.49303792, 1. ]], [[ 1. , 0.31726026, 0.00430444], [ 0.31726026, 1. , 0.23973121], [ 0.00430444, 0.23973121, 1. ]], ..., [[ 1. , 0.2982329 , 0.07047868], [ 0.2982329 , 1. , 0.28969585], [ 0.07047868, 0.28969585, 1. ]], [[ 1. , 0.48468315, 0.1270014 ], [ 0.48468315, 1. , 0.23816423], ... [ 0.36848594, 1. , 0.20173571], [ 0.15172166, 0.20173571, 1. ]], [[ 1. , -0.09939339, -0.09001966], [-0.09939339, 1. , 0.246294 ], [-0.09001966, 0.246294 , 1. ]], ..., [[ 1. , 0.49192847, 0.15722143], [ 0.49192847, 1. , 0.29030496], [ 0.15722143, 0.29030496, 1. ]], [[ 1. , 0.40425884, 0.16604949], [ 0.40425884, 1. , 0.31644025], [ 0.16604949, 0.31644025, 1. ]], [[ 1. , 0.71214665, 0.22512108], [ 0.71214665, 1. , 0.32460632], [ 0.22512108, 0.32460632, 1. ]]]])
- noise_chol_South Africa_stds(chain, draw, noise_chol_South Africa_stds_dim_0)float640.5349 0.431 1.158 ... 0.4302 1.215
array([[[0.53491119, 0.43096338, 1.15824286], [0.45006859, 0.35684383, 1.5885366 ], [0.52911664, 0.43826098, 1.76829858], ..., [0.23929478, 0.30540305, 1.50599346], [0.14620517, 0.45102983, 0.76363429], [0.28107478, 0.34724727, 1.15130411]], [[0.49119883, 0.35511895, 1.2359541 ], [0.49160659, 0.37286036, 0.95768854], [0.25065236, 0.50137585, 1.59148099], ..., [0.30518656, 0.53886371, 1.78000421], [0.33670211, 0.38883329, 1.66176677], [0.27916421, 0.49112526, 2.23205404]], [[0.18622751, 0.30379024, 1.47280193], [0.2317029 , 0.33054694, 1.06820261], [0.33985707, 0.35578534, 1.58447067], ..., [0.40043675, 0.38138817, 1.58591225], [0.43754413, 0.38519242, 1.48266707], [0.50844278, 0.29928312, 1.03343328]], [[0.26213754, 0.42430145, 1.13051579], [0.51324612, 0.52382017, 1.03951709], [0.26241434, 0.6543379 , 1.67900713], ..., [0.30151799, 0.61119872, 1.00398122], [0.29867705, 0.69957259, 0.8696062 ], [0.38222619, 0.43017794, 1.21473577]]])
- omega_South Africa(chain, draw, omega_South Africa_dim_0, omega_South Africa_dim_1)float640.02588 0.0 ... -0.0005307 0.04942
array([[[[ 0.02587804, 0. , 0. ], [ 0.01836493, 0.01403763, 0. ], [ 0.05349481, -0.00333952, 0.04626514]], [[ 0.02045254, 0. , 0. ], [ 0.0164209 , 0.01104938, 0. ], [ 0.04570972, 0.00974748, 0.04770504]], [[ 0.02438019, 0. , 0. ], [ 0.01789729, 0.0115165 , 0. ], [ 0.04101198, 0.00616365, 0.05223724]], ..., [[ 0.02144724, 0. , 0. ], [ 0.01613305, 0.01050653, 0. ], [ 0.04700323, 0.00915405, 0.06100091]], [[ 0.02088769, 0. , 0. ], [ 0.01958275, 0.01290723, 0. ], ... [ 0.01988475, 0.01139151, 0. ], [ 0.04960407, -0.00120676, 0.04350152]], [[ 0.0196344 , 0. , 0. ], [ 0.01415571, 0.01132816, 0. ], [ 0.04061827, 0.00556347, 0.04887737]], ..., [[ 0.0233852 , 0. , 0. ], [ 0.02085216, 0.01606946, 0. ], [ 0.04704126, -0.00125472, 0.04190013]], [[ 0.02467611, 0. , 0. ], [ 0.02142607, 0.01825339, 0. ], [ 0.04674536, -0.0024714 , 0.03928832]], [[ 0.02597684, 0. , 0. ], [ 0.02112623, 0.01032176, 0. ], [ 0.04834541, -0.0005307 , 0.04941882]]]])
- betaX_United Kingdom(chain, draw, betaX_United Kingdom_dim_0, betaX_United Kingdom_dim_1)float640.006215 0.007962 ... -0.0008488
array([[[[ 6.21527654e-03, 7.96242658e-03, 7.88051157e-03], [ 1.15171077e-02, 1.16361614e-02, 1.48235468e-02], [ 1.60614500e-03, 4.64278585e-03, 5.09645397e-03], ..., [ 3.11837065e-03, 4.52830660e-03, 3.85966222e-03], [ 2.72398143e-03, 3.12844071e-03, 3.78236467e-03], [-1.34696113e-02, -1.24753844e-02, -1.27756146e-02]], [[ 4.57886040e-03, 7.46487033e-03, 6.37450381e-03], [ 6.72372630e-03, 9.75144856e-03, 4.85785417e-03], [-2.40024310e-03, 9.83485240e-03, 3.45607862e-03], ..., [ 2.18882061e-03, 4.62963920e-03, 4.21873249e-03], [ 1.49583464e-03, 3.17624696e-03, 1.53531195e-03], [-1.32462642e-02, -2.22963646e-03, -9.45690105e-03]], [[ 3.05786456e-03, 5.72964323e-03, 1.41988294e-02], [ 3.84512745e-03, 8.16457708e-03, 1.99662356e-02], [ 5.74171450e-03, 7.84849071e-03, 7.32288675e-03], ..., ... ..., [ 2.63601200e-04, 9.58823988e-04, 2.74848285e-03], [ 4.17599347e-04, 8.03252204e-04, 2.32558242e-03], [-9.59425164e-04, -7.43012309e-03, -8.41686030e-03]], [[ 1.00242066e-03, 4.81168942e-04, 5.58231368e-03], [-4.21113612e-04, 1.20499479e-03, 6.14387145e-03], [ 2.62728541e-04, 1.78384078e-03, 3.48250277e-03], ..., [-5.73395517e-04, 5.29181893e-04, 3.16248307e-03], [ 5.72243946e-04, 2.23936860e-04, 1.89344881e-03], [ 2.17874407e-03, -3.72872663e-04, -7.26549941e-03]], [[ 1.71332328e-03, 2.29020264e-03, 2.69870951e-03], [ 1.99736573e-03, 5.71654164e-03, 5.37697455e-03], [-1.16874867e-03, 8.01736567e-03, 3.20344007e-03], ..., [-2.77691368e-04, 1.60241469e-03, 1.46174472e-03], [ 9.20442780e-04, 1.73041839e-03, 1.53158472e-03], [-2.73090553e-03, 4.47796455e-03, -8.48761300e-04]]]])
- noise_chol_United Kingdom_corr(chain, draw, noise_chol_United Kingdom_corr_dim_0, noise_chol_United Kingdom_corr_dim_1)float641.0 0.5468 -0.08382 ... -0.3961 1.0
array([[[[ 1. , 0.54681343, -0.08381696], [ 0.54681343, 1. , -0.08092586], [-0.08381696, -0.08092586, 1. ]], [[ 1. , 0.53047327, -0.21048533], [ 0.53047327, 1. , -0.07649641], [-0.21048533, -0.07649641, 1. ]], [[ 1. , 0.21884439, -0.30994369], [ 0.21884439, 1. , 0.00211945], [-0.30994369, 0.00211945, 1. ]], ..., [[ 1. , 0.61098734, -0.15671942], [ 0.61098734, 1. , -0.04346526], [-0.15671942, -0.04346526, 1. ]], [[ 1. , 0.43507977, -0.15288278], [ 0.43507977, 1. , -0.12857772], ... [ 0.45357421, 1. , -0.10553591], [-0.25567594, -0.10553591, 1. ]], [[ 1. , 0.27843166, -0.14093499], [ 0.27843166, 1. , -0.15293376], [-0.14093499, -0.15293376, 1. ]], ..., [[ 1. , 0.49718739, -0.10810989], [ 0.49718739, 1. , 0.1261408 ], [-0.10810989, 0.1261408 , 1. ]], [[ 1. , 0.37601611, -0.12683991], [ 0.37601611, 1. , 0.10034105], [-0.12683991, 0.10034105, 1. ]], [[ 1. , 0.67810689, -0.11132734], [ 0.67810689, 1. , -0.39613488], [-0.11132734, -0.39613488, 1. ]]]])
- noise_chol_United Kingdom_stds(chain, draw, noise_chol_United Kingdom_stds_dim_0)float640.5181 0.3656 ... 0.502 0.3273
array([[[0.51805797, 0.36561912, 0.41219843], [0.68063806, 0.3258411 , 0.64850899], [0.51016555, 0.36411294, 0.61003021], ..., [0.49340154, 0.36172116, 0.41739266], [0.27505083, 0.34639281, 0.14758779], [0.50307347, 0.41092623, 0.08538175]], [[0.6697906 , 0.40899173, 0.73265156], [0.63231443, 0.40987279, 0.8585983 ], [0.33083785, 0.45004791, 0.92705803], ..., [0.48935691, 0.49467794, 1.01295998], [0.44510797, 0.52991035, 1.08132399], [0.47965262, 0.45470307, 1.13437158]], [[0.34954657, 0.30423 , 0.33940372], [0.3663739 , 0.28138215, 0.46673025], [0.3639808 , 0.35480344, 0.50010027], ..., [0.63094498, 0.33266783, 0.62103783], [0.65253291, 0.35838869, 0.6875826 ], [0.55743991, 0.2230277 , 0.52674879]], [[0.45621561, 0.4814433 , 0.15078173], [0.75799236, 0.50949934, 0.4323404 ], [0.73309182, 0.73403857, 0.23684961], ..., [0.35197736, 0.39981316, 0.68034878], [0.33940493, 0.3816481 , 0.50998822], [0.49475088, 0.50196129, 0.32731979]]])
- omega_United Kingdom(chain, draw, omega_United Kingdom_dim_0, omega_United Kingdom_dim_1)float640.02544 0.0 ... -0.01106 0.02829
array([[[[ 0.02543666, 0. , 0. ], [ 0.02006354, 0.01133659, 0. ], [ 0.04131264, -0.00256865, 0.02887998]], [[ 0.02549925, 0. , 0. ], [ 0.0185183 , 0.00946872, 0. ], [ 0.043243 , -0.00733574, 0.03162954]], [[ 0.0239479 , 0. , 0. ], [ 0.01654327, 0.01014025, 0. ], [ 0.03652538, -0.00297742, 0.02638851]], ..., [[ 0.02832849, 0. , 0. ], [ 0.01965147, 0.01036701, 0. ], [ 0.04235752, -0.00157911, 0.03311147]], [[ 0.02435381, 0. , 0. ], [ 0.0177562 , 0.01068459, 0. ], ... [ 0.02055434, 0.01081319, 0. ], [ 0.04488657, -0.0039854 , 0.03301123]], [[ 0.02719916, 0. , 0. ], [ 0.01848579, 0.01219467, 0. ], [ 0.04251097, -0.00132384, 0.02652562]], ..., [[ 0.02471302, 0. , 0. ], [ 0.01817112, 0.01119504, 0. ], [ 0.04095206, -0.00400516, 0.03402911]], [[ 0.02572545, 0. , 0. ], [ 0.01783698, 0.01087901, 0. ], [ 0.04135835, -0.0064794 , 0.03091845]], [[ 0.02875208, 0. , 0. ], [ 0.02196562, 0.01197236, 0. ], [ 0.04070217, -0.01106366, 0.02829107]]]])
- betaX_United States(chain, draw, betaX_United States_dim_0, betaX_United States_dim_1)float640.009227 0.003603 ... 0.009821
array([[[[ 9.22722045e-03, 3.60275979e-03, 1.03413214e-03], [-3.34614989e-04, -4.28796096e-03, -1.35563330e-02], [ 5.11764460e-04, 6.43801265e-03, 7.73929452e-03], ..., [ 5.76870749e-03, 6.27007420e-03, 8.23227802e-03], [ 7.38431288e-03, 8.69752703e-03, 1.00594222e-02], [ 7.96822737e-03, 7.90918043e-03, 8.92412008e-03]], [[ 5.09639332e-03, 8.26151542e-03, 3.80693518e-04], [ 2.42408780e-03, 1.42977368e-03, -1.72811375e-03], [-9.40735942e-04, -3.31338691e-03, 1.03571680e-02], ..., [ 6.83335339e-04, 2.23986284e-03, 5.60782260e-03], [ 9.64568428e-04, 2.62831868e-03, 6.90049169e-03], [ 1.70169434e-03, 3.80864674e-03, 5.99356634e-03]], [[ 8.69689260e-03, 7.00224941e-03, 9.86526589e-06], [ 2.31349350e-03, 1.78440350e-03, -3.00448101e-03], [-2.42490086e-03, -1.88417718e-03, 1.32421872e-02], ..., ... ..., [ 2.61912113e-03, 1.64929777e-03, 9.36155922e-03], [ 2.74610370e-03, 2.23750225e-03, 1.07090483e-02], [ 4.07038526e-03, 1.67622153e-03, 9.23124744e-03]], [[ 7.08269640e-03, 3.31030736e-04, 1.41251160e-03], [-1.13619758e-03, -3.66125307e-03, -3.95184935e-03], [-9.69577767e-04, 1.13394403e-03, 1.49765738e-02], ..., [ 2.80170646e-03, 2.35261424e-03, 8.50181539e-03], [ 2.97485313e-03, 3.36437811e-03, 9.72913924e-03], [ 3.99169638e-03, 2.90549668e-03, 8.80270684e-03]], [[ 5.76478736e-03, -5.12266740e-04, 4.32993535e-03], [-8.04535286e-04, -5.02750672e-03, -2.30536451e-03], [ 4.31438297e-03, 5.49012222e-03, 1.32219934e-02], ..., [ 4.21131517e-03, 4.35513754e-03, 8.79475388e-03], [ 4.40069853e-03, 4.85238612e-03, 1.03729712e-02], [ 4.98825667e-03, 4.26289486e-03, 9.82111912e-03]]]])
- noise_chol_United States_corr(chain, draw, noise_chol_United States_corr_dim_0, noise_chol_United States_corr_dim_1)float641.0 -0.1237 0.2194 ... -0.3669 1.0
array([[[[ 1. , -0.12373496, 0.2194029 ], [-0.12373496, 1. , -0.25418072], [ 0.2194029 , -0.25418072, 1. ]], [[ 1. , -0.08755801, 0.16400819], [-0.08755801, 1. , -0.09966876], [ 0.16400819, -0.09966876, 1. ]], [[ 1. , 0.10421435, 0.31071612], [ 0.10421435, 1. , -0.07786102], [ 0.31071612, -0.07786102, 1. ]], ..., [[ 1. , -0.25690227, -0.2516993 ], [-0.25690227, 1. , -0.16348354], [-0.2516993 , -0.16348354, 1. ]], [[ 1. , 0.13805707, 0.1129058 ], [ 0.13805707, 1. , 0.03887161], ... [-0.24519414, 1. , 0.18560319], [-0.04654987, 0.18560319, 1. ]], [[ 1. , -0.08347974, 0.08345532], [-0.08347974, 1. , -0.16184667], [ 0.08345532, -0.16184667, 1. ]], ..., [[ 1. , 0.09031447, 0.01845146], [ 0.09031447, 1. , 0.07953875], [ 0.01845146, 0.07953875, 1. ]], [[ 1. , -0.08492667, -0.06105887], [-0.08492667, 1. , -0.09564229], [-0.06105887, -0.09564229, 1. ]], [[ 1. , -0.07369983, 0.19028836], [-0.07369983, 1. , -0.36687185], [ 0.19028836, -0.36687185, 1. ]]]])
- noise_chol_United States_stds(chain, draw, noise_chol_United States_stds_dim_0)float640.3961 0.1731 ... 0.236 0.04284
array([[[0.39610121, 0.17313566, 0.13151658], [0.50300257, 0.16378312, 0.30785359], [0.40499367, 0.29183097, 0.17103799], ..., [0.25308695, 0.225279 , 0.0499346 ], [0.18360867, 0.14793039, 0.10335308], [0.13763278, 0.27036949, 0.25001474]], [[0.33901425, 0.2859728 , 0.14938787], [0.46199928, 0.24372264, 0.38710875], [0.18262759, 0.20826379, 0.15278749], ..., [0.22499492, 0.26278119, 0.64153824], [0.28685874, 0.27750089, 0.57339015], [0.22616996, 0.26611302, 0.81114613]], [[0.26858195, 0.26946796, 0.01240314], [0.19922095, 0.23897807, 0.03079663], [0.23627217, 0.25924429, 0.06318893], ..., [0.47553886, 0.16034714, 0.5655458 ], [0.47969097, 0.15234592, 0.45064874], [0.5480807 , 0.12355644, 0.19380373]], [[0.35877391, 0.24909448, 0.08051716], [0.53630726, 0.29214595, 0.0914405 ], [0.45646339, 0.49269993, 0.1171669 ], ..., [0.24895896, 0.30515014, 0.05616936], [0.17878626, 0.23102656, 0.03243802], [0.23670972, 0.23603791, 0.04284113]]])
- omega_United States(chain, draw, omega_United States_dim_0, omega_United States_dim_1)float640.02224 0.0 ... -0.007916 0.02205
array([[[[ 0.02224269, 0. , 0. ], [ 0.01426655, 0.00781906, 0. ], [ 0.04297316, -0.0029042 , 0.02139896]], [[ 0.02161116, 0. , 0. ], [ 0.01442107, 0.00699402, 0. ], [ 0.04733589, -0.00850155, 0.02438742]], [[ 0.02154883, 0. , 0. ], [ 0.01541935, 0.00865652, 0. ], [ 0.04205062, -0.00440743, 0.01687921]], ..., [[ 0.02182073, 0. , 0. ], [ 0.0120993 , 0.00850836, 0. ], [ 0.04378857, -0.00264491, 0.02324224]], [[ 0.02189389, 0. , 0. ], [ 0.01425134, 0.00623576, 0. ], ... [ 0.01523062, 0.00780871, 0. ], [ 0.04675563, -0.00378547, 0.02724154]], [[ 0.02275317, 0. , 0. ], [ 0.01453993, 0.00875474, 0. ], [ 0.04320462, -0.0011659 , 0.02463757]], ..., [[ 0.02200213, 0. , 0. ], [ 0.01366546, 0.01006372, 0. ], [ 0.04291484, -0.0076015 , 0.0180956 ]], [[ 0.02158716, 0. , 0. ], [ 0.01363408, 0.0076984 , 0. ], [ 0.04297396, -0.00866316, 0.01888493]], [[ 0.02238792, 0. , 0. ], [ 0.01314157, 0.00867913, 0. ], [ 0.04180196, -0.00791556, 0.02205044]]]])
- chainPandasIndex
PandasIndex(Int64Index([0, 1, 2, 3], dtype='int64', name='chain'))
- drawPandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999], dtype='int64', name='draw', length=2000))
- equationsPandasIndex
PandasIndex(Index(['dl_gdp', 'dl_cons', 'dl_gfcf'], dtype='object', name='equations'))
- lagsPandasIndex
PandasIndex(Int64Index([1, 2], dtype='int64', name='lags'))
- cross_varsPandasIndex
PandasIndex(Index(['dl_gdp', 'dl_cons', 'dl_gfcf'], dtype='object', name='cross_vars'))
- omega_global_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3, 4, 5], dtype='int64', name='omega_global_dim_0'))
- noise_chol_Australia_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3, 4, 5], dtype='int64', name='noise_chol_Australia_dim_0'))
- noise_chol_Canada_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3, 4, 5], dtype='int64', name='noise_chol_Canada_dim_0'))
- noise_chol_Chile_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3, 4, 5], dtype='int64', name='noise_chol_Chile_dim_0'))
- noise_chol_Ireland_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3, 4, 5], dtype='int64', name='noise_chol_Ireland_dim_0'))
- noise_chol_New Zealand_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3, 4, 5], dtype='int64', name='noise_chol_New Zealand_dim_0'))
- noise_chol_South Africa_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3, 4, 5], dtype='int64', name='noise_chol_South Africa_dim_0'))
- noise_chol_United Kingdom_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3, 4, 5], dtype='int64', name='noise_chol_United Kingdom_dim_0'))
- noise_chol_United States_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3, 4, 5], dtype='int64', name='noise_chol_United States_dim_0'))
- omega_global_corr_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_global_corr_dim_0'))
- omega_global_corr_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_global_corr_dim_1'))
- omega_global_stds_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_global_stds_dim_0'))
- betaX_Australia_dim_0PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], dtype='int64', name='betaX_Australia_dim_0'))
- betaX_Australia_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='betaX_Australia_dim_1'))
- noise_chol_Australia_corr_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_Australia_corr_dim_0'))
- noise_chol_Australia_corr_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_Australia_corr_dim_1'))
- noise_chol_Australia_stds_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_Australia_stds_dim_0'))
- omega_Australia_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_Australia_dim_0'))
- omega_Australia_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_Australia_dim_1'))
- betaX_Canada_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], dtype='int64', name='betaX_Canada_dim_0'))
- betaX_Canada_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='betaX_Canada_dim_1'))
- noise_chol_Canada_corr_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_Canada_corr_dim_0'))
- noise_chol_Canada_corr_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_Canada_corr_dim_1'))
- noise_chol_Canada_stds_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_Canada_stds_dim_0'))
- omega_Canada_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_Canada_dim_0'))
- omega_Canada_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_Canada_dim_1'))
- betaX_Chile_dim_0PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], dtype='int64', name='betaX_Chile_dim_0'))
- betaX_Chile_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='betaX_Chile_dim_1'))
- noise_chol_Chile_corr_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_Chile_corr_dim_0'))
- noise_chol_Chile_corr_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_Chile_corr_dim_1'))
- noise_chol_Chile_stds_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_Chile_stds_dim_0'))
- omega_Chile_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_Chile_dim_0'))
- omega_Chile_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_Chile_dim_1'))
- betaX_Ireland_dim_0PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], dtype='int64', name='betaX_Ireland_dim_0'))
- betaX_Ireland_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='betaX_Ireland_dim_1'))
- noise_chol_Ireland_corr_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_Ireland_corr_dim_0'))
- noise_chol_Ireland_corr_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_Ireland_corr_dim_1'))
- noise_chol_Ireland_stds_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_Ireland_stds_dim_0'))
- omega_Ireland_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_Ireland_dim_0'))
- omega_Ireland_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_Ireland_dim_1'))
- betaX_New Zealand_dim_0PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40], dtype='int64', name='betaX_New Zealand_dim_0'))
- betaX_New Zealand_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='betaX_New Zealand_dim_1'))
- noise_chol_New Zealand_corr_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_New Zealand_corr_dim_0'))
- noise_chol_New Zealand_corr_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_New Zealand_corr_dim_1'))
- noise_chol_New Zealand_stds_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_New Zealand_stds_dim_0'))
- omega_New Zealand_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_New Zealand_dim_0'))
- omega_New Zealand_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_New Zealand_dim_1'))
- betaX_South Africa_dim_0PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], dtype='int64', name='betaX_South Africa_dim_0'))
- betaX_South Africa_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='betaX_South Africa_dim_1'))
- noise_chol_South Africa_corr_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_South Africa_corr_dim_0'))
- noise_chol_South Africa_corr_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_South Africa_corr_dim_1'))
- noise_chol_South Africa_stds_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_South Africa_stds_dim_0'))
- omega_South Africa_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_South Africa_dim_0'))
- omega_South Africa_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_South Africa_dim_1'))
- betaX_United Kingdom_dim_0PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], dtype='int64', name='betaX_United Kingdom_dim_0'))
- betaX_United Kingdom_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='betaX_United Kingdom_dim_1'))
- noise_chol_United Kingdom_corr_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_United Kingdom_corr_dim_0'))
- noise_chol_United Kingdom_corr_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_United Kingdom_corr_dim_1'))
- noise_chol_United Kingdom_stds_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_United Kingdom_stds_dim_0'))
- omega_United Kingdom_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_United Kingdom_dim_0'))
- omega_United Kingdom_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_United Kingdom_dim_1'))
- betaX_United States_dim_0PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45], dtype='int64', name='betaX_United States_dim_0'))
- betaX_United States_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='betaX_United States_dim_1'))
- noise_chol_United States_corr_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_United States_corr_dim_0'))
- noise_chol_United States_corr_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_United States_corr_dim_1'))
- noise_chol_United States_stds_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_United States_stds_dim_0'))
- omega_United States_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_United States_dim_0'))
- omega_United States_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_United States_dim_1'))
- created_at :
- 2023-02-21T19:24:14.259388
- arviz_version :
- 0.14.0
<xarray.Dataset> Dimensions: (chain: 4, draw: 2000, equations: 3, lags: 2, cross_vars: 3, omega_global_dim_0: 6, noise_chol_Australia_dim_0: 6, noise_chol_Canada_dim_0: 6, noise_chol_Chile_dim_0: 6, ... betaX_United States_dim_1: 3, noise_chol_United States_corr_dim_0: 3, noise_chol_United States_corr_dim_1: 3, noise_chol_United States_stds_dim_0: 3, omega_United States_dim_0: 3, omega_United States_dim_1: 3) Coordinates: (12/73) * chain (chain) int64 0 1 2 3 * draw (draw) int64 0 1 2 ... 1997 1998 1999 * equations (equations) <U7 'dl_gdp' ... 'dl_gfcf' * lags (lags) int64 1 2 * cross_vars (cross_vars) <U7 'dl_gdp' ... 'dl_g... * omega_global_dim_0 (omega_global_dim_0) int64 0 1 2 3 4 5 ... ... * betaX_United States_dim_1 (betaX_United States_dim_1) int64 0... * noise_chol_United States_corr_dim_0 (noise_chol_United States_corr_dim_0) int64 ... * noise_chol_United States_corr_dim_1 (noise_chol_United States_corr_dim_1) int64 ... * noise_chol_United States_stds_dim_0 (noise_chol_United States_stds_dim_0) int64 ... * omega_United States_dim_0 (omega_United States_dim_0) int64 0... * omega_United States_dim_1 (omega_United States_dim_1) int64 0... Data variables: (12/80) alpha_hat_location (chain, draw) float64 0.01867 ... 0... beta_hat_location (chain, draw) float64 0.03707 ... 0... lag_coefs_Australia (chain, draw, equations, lags, cross_vars) float64 ... alpha_Australia (chain, draw, equations) float64 0.... lag_coefs_Canada (chain, draw, equations, lags, cross_vars) float64 ... alpha_Canada (chain, draw, equations) float64 0.... ... ... noise_chol_United Kingdom_stds (chain, draw, noise_chol_United Kingdom_stds_dim_0) float64 ... omega_United Kingdom (chain, draw, omega_United Kingdom_dim_0, omega_United Kingdom_dim_1) float64 ... betaX_United States (chain, draw, betaX_United States_dim_0, betaX_United States_dim_1) float64 ... noise_chol_United States_corr (chain, draw, noise_chol_United States_corr_dim_0, noise_chol_United States_corr_dim_1) float64 ... noise_chol_United States_stds (chain, draw, noise_chol_United States_stds_dim_0) float64 ... omega_United States (chain, draw, omega_United States_dim_0, omega_United States_dim_1) float64 ... Attributes: created_at: 2023-02-21T19:24:14.259388 arviz_version: 0.14.0
xarray.Dataset -
- chain: 4
- draw: 2000
- obs_Australia_dim_2: 49
- obs_Australia_dim_3: 3
- obs_Canada_dim_2: 22
- obs_Canada_dim_3: 3
- obs_Chile_dim_2: 49
- obs_Chile_dim_3: 3
- obs_Ireland_dim_2: 49
- obs_Ireland_dim_3: 3
- obs_New Zealand_dim_2: 41
- obs_New Zealand_dim_3: 3
- obs_South Africa_dim_2: 49
- obs_South Africa_dim_3: 3
- obs_United Kingdom_dim_2: 49
- obs_United Kingdom_dim_3: 3
- obs_United States_dim_2: 46
- obs_United States_dim_3: 3
- chain(chain)int640 1 2 3
array([0, 1, 2, 3])
- draw(draw)int640 1 2 3 4 ... 1996 1997 1998 1999
array([ 0, 1, 2, ..., 1997, 1998, 1999])
- obs_Australia_dim_2(obs_Australia_dim_2)int640 1 2 3 4 5 6 ... 43 44 45 46 47 48
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48])
- obs_Australia_dim_3(obs_Australia_dim_3)int640 1 2
array([0, 1, 2])
- obs_Canada_dim_2(obs_Canada_dim_2)int640 1 2 3 4 5 6 ... 16 17 18 19 20 21
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21])
- obs_Canada_dim_3(obs_Canada_dim_3)int640 1 2
array([0, 1, 2])
- obs_Chile_dim_2(obs_Chile_dim_2)int640 1 2 3 4 5 6 ... 43 44 45 46 47 48
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48])
- obs_Chile_dim_3(obs_Chile_dim_3)int640 1 2
array([0, 1, 2])
- obs_Ireland_dim_2(obs_Ireland_dim_2)int640 1 2 3 4 5 6 ... 43 44 45 46 47 48
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48])
- obs_Ireland_dim_3(obs_Ireland_dim_3)int640 1 2
array([0, 1, 2])
- obs_New Zealand_dim_2(obs_New Zealand_dim_2)int640 1 2 3 4 5 6 ... 35 36 37 38 39 40
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40])
- obs_New Zealand_dim_3(obs_New Zealand_dim_3)int640 1 2
array([0, 1, 2])
- obs_South Africa_dim_2(obs_South Africa_dim_2)int640 1 2 3 4 5 6 ... 43 44 45 46 47 48
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48])
- obs_South Africa_dim_3(obs_South Africa_dim_3)int640 1 2
array([0, 1, 2])
- obs_United Kingdom_dim_2(obs_United Kingdom_dim_2)int640 1 2 3 4 5 6 ... 43 44 45 46 47 48
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48])
- obs_United Kingdom_dim_3(obs_United Kingdom_dim_3)int640 1 2
array([0, 1, 2])
- obs_United States_dim_2(obs_United States_dim_2)int640 1 2 3 4 5 6 ... 40 41 42 43 44 45
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45])
- obs_United States_dim_3(obs_United States_dim_3)int640 1 2
array([0, 1, 2])
- obs_Australia(chain, draw, obs_Australia_dim_2, obs_Australia_dim_3)float640.01718 0.03863 ... 0.01568 0.02849
array([[[[ 1.71814304e-02, 3.86304132e-02, 8.62497633e-03], [ 3.72827017e-02, 2.32908100e-02, 4.65201150e-02], [ 1.56932521e-02, 1.75517726e-02, 4.09380858e-02], ..., [ 4.10301093e-02, 4.62873493e-02, 1.15345906e-01], [ 3.95068453e-03, 1.66705131e-02, -1.22055946e-02], [ 1.61741262e-02, 2.00958780e-02, 4.75676040e-02]], [[ 1.16765646e-02, 4.34190246e-02, 1.17997888e-02], [ 3.70198818e-02, 4.49392262e-02, 6.63994229e-02], [ 2.29244731e-03, 3.70708820e-02, -8.81318993e-02], ..., [ 4.06237200e-02, 3.38910413e-02, 5.24163359e-02], [ 2.45360155e-02, 3.27939557e-02, 9.95139123e-02], [ 1.18874430e-02, 1.24712580e-03, -3.16569114e-02]], [[ 3.78454998e-02, 5.97333817e-02, 6.57289700e-02], [ 3.42922279e-02, 1.98606073e-02, 5.86488810e-02], [ 2.97512375e-02, 5.08368977e-02, 1.44429184e-02], ..., ... ..., [-7.82775100e-03, -1.11524239e-02, 1.33931778e-02], [ 1.04920189e-02, 2.95794905e-02, -4.20372757e-02], [ 1.25868172e-02, 8.26226518e-03, 2.32814476e-02]], [[ 4.22496563e-02, 3.93804556e-02, 6.17123928e-02], [ 5.75016873e-02, 2.83514497e-02, 1.29165220e-01], [ 9.63236659e-03, 2.90319014e-02, 3.65130736e-02], ..., [ 2.54372236e-02, 1.22418583e-02, 3.11397189e-02], [ 3.37716207e-02, 2.88003128e-02, 6.13473952e-02], [ 4.59080412e-02, 4.35640830e-02, 1.02486032e-01]], [[ 2.69865820e-02, 2.75567929e-02, 5.12639080e-02], [ 1.63093433e-02, 2.40403089e-02, 1.11878254e-02], [ 3.20637964e-02, 3.06880118e-02, 3.32248612e-02], ..., [ 1.52853345e-02, 2.57307871e-02, -1.14341035e-02], [ 1.15251256e-02, 3.50691462e-02, -5.55453149e-02], [ 1.15289667e-02, 1.56763222e-02, 2.84865123e-02]]]])
- obs_Canada(chain, draw, obs_Canada_dim_2, obs_Canada_dim_3)float64-0.004644 0.000541 ... 0.01186
array([[[[-4.64408169e-03, 5.41022474e-04, 2.77090992e-02], [ 7.65108310e-02, 4.20272316e-02, 4.29074280e-02], [ 7.63487440e-02, 5.93399341e-02, 2.21993532e-02], ..., [-4.88784351e-03, 1.89402137e-02, 5.13358215e-02], [ 3.09359293e-02, 2.63088702e-02, 3.34784431e-02], [-1.62071430e-02, 2.95699755e-03, -1.96588288e-02]], [[ 1.69427739e-02, 3.14504425e-02, -2.45921194e-02], [ 4.78292980e-02, 4.17053081e-02, 1.16101106e-01], [ 2.21984842e-02, 1.30568362e-02, 2.49782856e-02], ..., [-1.36514051e-02, 2.28260141e-02, -4.90129985e-02], [ 4.23434785e-02, 1.39910394e-02, -9.14378186e-03], [ 1.41931876e-03, 2.56539088e-03, -2.01969582e-02]], [[ 9.35860132e-03, 2.05013115e-02, -7.53635328e-02], [ 5.08839915e-02, 4.06375683e-02, 6.38489237e-02], [ 3.78814501e-02, 3.35364632e-02, 4.77189677e-02], ..., ... ..., [-2.43404641e-02, 1.05330236e-02, -7.31521306e-02], [-7.40980621e-03, -8.55092575e-03, 1.99562626e-02], [ 8.46992483e-03, 1.95258363e-02, -3.71379069e-04]], [[-3.32481115e-02, -5.09555042e-03, -6.69249055e-02], [ 2.86525876e-02, 2.61265843e-02, 7.45085394e-02], [ 2.94601432e-02, 3.67928245e-02, 6.20563008e-02], ..., [-2.53938240e-04, 1.58998304e-02, -1.97567736e-02], [-3.30727502e-02, -1.95918626e-02, -2.19663825e-02], [ 3.07192812e-02, 1.44959030e-02, 6.38936482e-03]], [[-5.55669235e-03, 1.34096637e-02, -2.80229050e-03], [ 4.48636450e-02, 4.32087685e-02, 1.64682437e-02], [ 4.45741963e-02, 5.19414321e-02, -7.16768194e-02], ..., [ 7.20579040e-04, 1.90249533e-02, 4.08664008e-02], [-3.45389840e-03, 9.57581651e-03, 1.34331022e-02], [ 1.33797090e-02, 4.79016262e-02, 1.18614703e-02]]]])
- obs_Chile(chain, draw, obs_Chile_dim_2, obs_Chile_dim_3)float640.06127 0.03212 ... 0.08228
array([[[[ 6.12721183e-02, 3.21234017e-02, -4.03472510e-03], [ 9.81831038e-02, 7.56367935e-02, 3.00220526e-01], [-3.68627357e-02, -2.69241465e-02, 8.85175587e-02], ..., [ 6.65175085e-02, -3.07421617e-02, 1.67618155e-01], [ 7.17788445e-02, 9.60941741e-02, 1.12337786e-02], [ 4.37529878e-02, 4.24993573e-03, 1.38548876e-01]], [[ 8.62422526e-02, 7.59547740e-02, 2.11013291e-01], [-4.18916708e-02, 2.26006525e-02, -4.03739272e-02], [ 4.36567379e-02, 2.03844443e-02, 1.25405233e-01], ..., [ 2.46903978e-02, 3.19814849e-02, 9.10853274e-02], [-6.69388915e-02, -4.47635493e-02, -1.14852887e-01], [-1.12864431e-02, -8.30831365e-02, 3.79573314e-02]], [[ 8.11728592e-02, 3.46064296e-02, 1.38006803e-01], [ 8.66492371e-02, 1.54124190e-01, 9.23997087e-02], [ 8.72837690e-02, 8.65410217e-02, 9.36000724e-02], ..., ... ..., [ 5.79495015e-02, 1.32505013e-02, 6.20323360e-02], [ 3.59242864e-02, 8.75189010e-02, 1.26132245e-01], [ 1.51691936e-02, 3.39243983e-02, 1.85009169e-02]], [[-2.27000865e-02, 2.03228260e-03, -4.95550764e-02], [ 4.93748178e-02, 5.23312019e-02, 1.21542326e-01], [-1.79720053e-03, -5.77901061e-02, 4.97585606e-02], ..., [ 7.51790930e-02, -6.82322742e-03, 1.38309046e-01], [ 1.47121927e-02, 1.32441539e-02, -1.41932657e-01], [-6.58490525e-03, -2.03698972e-02, -5.22053183e-02]], [[ 8.65731987e-02, 8.21620479e-02, 5.84672407e-02], [-1.91285361e-02, -7.43787048e-02, -7.11719043e-02], [ 6.22570647e-02, 5.84276412e-02, 1.84151634e-01], ..., [ 3.89607458e-02, 2.18309257e-02, 1.11930753e-01], [ 1.28759433e-01, 7.40660544e-02, 3.00524095e-01], [ 1.78603328e-02, 7.96127549e-03, 8.22820066e-02]]]])
- obs_Ireland(chain, draw, obs_Ireland_dim_2, obs_Ireland_dim_3)float640.1557 0.08176 ... 0.1287 -0.1345
array([[[[ 1.55690315e-01, 8.17612051e-02, 2.54884944e-01], [ 8.30537113e-02, 1.96665946e-02, 1.91948672e-01], [ 5.18063002e-02, 5.37948610e-02, 2.01020695e-02], ..., [-4.17005132e-02, 8.62801058e-03, -2.50714188e-02], [ 2.34376745e-02, -2.86949863e-02, 4.73413071e-02], [ 4.12567885e-02, 2.97175467e-02, 1.09204836e-02]], [[ 7.12140536e-02, 5.72404917e-02, 1.40261014e-01], [ 5.01194556e-02, 5.21749690e-02, -6.98677346e-02], [ 3.60390422e-03, 4.14117641e-02, -6.59201620e-02], ..., [ 8.32956157e-02, 4.80447074e-02, 2.77882427e-01], [ 3.15432944e-02, -5.43268717e-03, 2.16518669e-01], [ 7.67925538e-02, 9.95581466e-02, 3.24362526e-01]], [[ 1.02130912e-01, 7.24110686e-02, 2.33259953e-01], [ 8.76638592e-02, 2.77026372e-02, -1.28836810e-01], [ 3.81034380e-02, 2.48540029e-02, -2.91263272e-01], ..., ... ..., [ 4.69004828e-02, 7.92535331e-02, 1.62716290e-01], [ 4.44298900e-02, -2.36389271e-02, 3.84840773e-02], [ 6.47962921e-02, 7.12658913e-02, 1.09032776e-01]], [[ 1.45692181e-01, 9.76994510e-02, 1.16284048e-01], [ 9.98886023e-03, 2.38721537e-02, 1.37205085e-01], [ 1.13475116e-01, 9.52640604e-02, 5.53537026e-01], ..., [ 1.98637109e-03, -1.44739613e-02, -4.04618619e-03], [ 2.07201815e-02, -9.89853531e-03, 4.83800414e-02], [ 6.30169392e-02, 5.31426338e-02, 7.65845437e-02]], [[ 4.12936563e-03, 3.55472206e-02, 1.96776728e-01], [ 3.03932892e-02, 8.51055142e-03, -2.50454449e-01], [ 5.73927769e-02, 5.66884598e-02, 2.93782574e-01], ..., [-2.56240493e-02, 1.43019866e-02, -9.83973799e-02], [ 6.46347175e-02, -1.25078103e-02, -4.73941676e-02], [ 1.42690626e-01, 1.28735853e-01, -1.34536179e-01]]]])
- obs_New Zealand(chain, draw, obs_New Zealand_dim_2, obs_New Zealand_dim_3)float640.03207 0.02997 ... 0.03527 0.05695
array([[[[ 3.20690633e-02, 2.99727795e-02, 6.17409380e-02], [-2.62744148e-02, -1.74185454e-02, 5.74588695e-02], [ 6.14617585e-03, 6.67343005e-03, -2.34943617e-02], ..., [ 3.01151769e-02, 3.01847683e-02, 7.40915874e-02], [ 4.60903541e-02, 4.94159825e-02, 8.83121067e-02], [ 4.52213957e-02, 3.48933527e-02, 1.19125066e-01]], [[ 4.02898888e-02, 2.22407120e-02, 7.61584903e-02], [ 2.87672463e-02, 2.62409068e-02, -1.34640321e-02], [ 4.44452188e-02, 5.58481770e-02, 8.33098440e-02], ..., [ 4.32440904e-02, 4.30665619e-02, 1.74801352e-01], [ 6.65765975e-03, 2.01150519e-03, -1.15729457e-02], [ 5.09384596e-02, 4.91561580e-02, 1.07038226e-01]], [[ 2.15312405e-02, 1.19202069e-02, 7.14022593e-02], [ 3.82029616e-02, 3.03344257e-02, 7.46014123e-02], [ 4.86917765e-02, 3.76701870e-02, 7.68651184e-02], ..., ... ..., [ 3.69542256e-02, 4.80030477e-03, -3.94413090e-02], [ 3.21254844e-02, 2.89474315e-02, 2.37307277e-02], [ 3.65098794e-02, 4.35925092e-02, 1.25754074e-01]], [[ 2.40271958e-02, 3.69412637e-02, -3.30688007e-02], [ 5.32477411e-02, 4.43699163e-02, 1.01855370e-01], [ 3.02279921e-02, 5.15357782e-02, 3.36666242e-02], ..., [ 2.32986286e-02, 2.17719747e-02, 4.38569710e-02], [ 9.90753293e-03, 2.49266878e-02, -1.53327898e-02], [ 1.61506414e-02, 3.21587798e-02, -5.85673173e-02]], [[ 2.53196637e-02, 4.13067995e-02, 6.94431362e-02], [ 5.02102734e-02, 2.53355885e-02, 1.97033240e-01], [ 3.47888163e-02, 4.30719282e-02, 6.21989311e-02], ..., [ 3.66163423e-02, 2.37704316e-02, -1.16997417e-02], [ 1.55158215e-02, 2.99695145e-02, 4.99092419e-02], [ 3.74461661e-02, 3.52667102e-02, 5.69489057e-02]]]])
- obs_South Africa(chain, draw, obs_South Africa_dim_2, obs_South Africa_dim_3)float640.03308 0.04329 ... -0.007726
array([[[[ 3.30780556e-02, 4.32893911e-02, 6.05011744e-02], [-1.51739626e-04, -1.13314322e-02, -6.98970591e-02], [ 5.06024438e-02, 5.17561504e-02, 9.42083761e-02], ..., [ 5.54624849e-03, -3.15079810e-03, -1.47314096e-02], [ 2.08204734e-02, 2.75899818e-02, -1.83820743e-02], [-4.73507799e-03, 2.18914557e-02, -4.96872468e-02]], [[ 4.81253439e-02, 4.89427662e-02, 4.42420433e-02], [ 2.49053249e-02, 3.43137915e-02, 4.90914050e-02], [ 1.46720422e-02, 3.49305129e-02, 3.71172461e-02], ..., [-4.48067052e-03, -1.40509654e-02, -1.14008983e-01], [ 1.63492220e-02, 2.43939630e-02, -1.44261140e-02], [ 2.91068131e-02, 2.07542405e-02, 2.58933316e-02]], [[ 7.73081474e-02, 7.66319051e-02, 6.97183640e-02], [ 1.31293018e-02, 1.13030226e-02, -1.19635530e-01], [-2.73258731e-02, -6.94899442e-03, -4.09784834e-02], ..., ... ..., [ 5.04232684e-02, 5.28574979e-02, 1.24196528e-01], [ 1.63034069e-02, 2.85918028e-02, 4.63768417e-02], [ 2.28468022e-02, 8.97429649e-03, 1.21741339e-02]], [[ 1.21447075e-02, -2.23071080e-03, 2.54235225e-02], [ 2.48943153e-03, -3.75262990e-03, -2.55812651e-04], [ 3.38794359e-02, 1.90850623e-02, 7.09915282e-02], ..., [ 2.14291154e-02, 2.95327945e-02, -9.95109508e-03], [ 9.76334126e-03, 2.74741835e-02, -9.84441835e-02], [-2.84738787e-03, 2.82455574e-02, -8.46302365e-02]], [[ 1.76455902e-02, 3.48699330e-02, -1.12066834e-02], [ 2.56519386e-02, 3.03284960e-02, 2.70031257e-02], [ 8.51457640e-03, 1.04369079e-02, 3.20902969e-02], ..., [ 1.44325853e-02, 9.60955260e-03, -3.49045275e-02], [ 2.94730987e-02, 3.92554503e-02, -1.61254730e-02], [ 2.21664043e-02, 3.03301943e-02, -7.72575903e-03]]]])
- obs_United Kingdom(chain, draw, obs_United Kingdom_dim_2, obs_United Kingdom_dim_3)float640.0448 0.04243 ... 0.02593 0.05417
array([[[[ 4.47963612e-02, 4.24337553e-02, 5.30809163e-02], [ 1.98628679e-02, 3.62871294e-02, -2.13912012e-02], [ 6.66614065e-03, 2.15867609e-02, -1.32673374e-02], ..., [ 4.31005695e-02, 3.91699840e-02, 6.53844859e-02], [ 4.41643424e-02, 2.77469541e-02, 7.85013753e-02], [ 3.93853453e-02, 3.28562568e-02, 8.88386060e-02]], [[-5.90061000e-03, -3.68935945e-03, -4.58361479e-03], [ 1.25872647e-03, 6.90687176e-03, 2.50108349e-02], [ 4.08323717e-02, 3.37580392e-02, 1.54248560e-01], ..., [ 4.08601546e-02, 2.69133667e-02, 1.37595011e-01], [ 3.98290375e-02, 2.03067542e-02, 4.83012601e-02], [ 1.56694518e-02, 1.62809715e-02, 4.68512624e-02]], [[ 3.01925836e-02, 1.73296171e-02, 7.20531325e-03], [ 1.73253627e-02, 2.25736782e-02, 5.78747659e-02], [-1.02540683e-02, 9.73991571e-04, -4.85102028e-02], ..., ... ..., [ 2.12890584e-03, 6.05849284e-03, 2.34878655e-02], [ 1.25287356e-02, 6.89032917e-03, 6.88012797e-02], [ 4.40254150e-03, 1.75809138e-03, 6.40606607e-03]], [[-1.73004397e-02, -7.43669461e-03, -2.15385541e-02], [-2.15727640e-03, 4.04738662e-03, -4.19487099e-02], [ 4.29180817e-02, 3.82009101e-02, 6.67301387e-02], ..., [-4.68188628e-03, 1.33528184e-02, -4.39221050e-02], [ 4.68646792e-02, 3.31468558e-02, 5.82560257e-02], [ 7.75585379e-03, 7.89267910e-03, -3.41566846e-02]], [[ 5.82243193e-02, 5.36666285e-02, 6.65792342e-02], [ 5.36896564e-02, 4.72045409e-02, 4.98576751e-02], [ 5.21386240e-02, 5.64919290e-02, 1.12981453e-01], ..., [ 3.53548206e-02, 2.98210067e-02, 1.94859678e-02], [ 2.80990148e-02, 3.17759443e-02, -9.36937590e-03], [ 2.15120699e-02, 2.59287536e-02, 5.41668008e-02]]]])
- obs_United States(chain, draw, obs_United States_dim_2, obs_United States_dim_3)float640.008293 0.0005756 ... 0.02601
array([[[[ 0.00829273, 0.00057562, 0.00587833], [ 0.01323049, 0.00472613, -0.02500458], [ 0.01578798, 0.02120087, 0.01372787], ..., [ 0.00020075, 0.00101262, -0.0349095 ], [ 0.00136731, 0.00649784, -0.03638963], [ 0.04477031, 0.03937194, 0.05329405]], [[ 0.05196033, 0.03276444, 0.06056884], [ 0.02986291, 0.00465566, 0.10946823], [ 0.01320663, 0.01860797, 0.01033147], ..., [ 0.00389877, 0.00691071, -0.03040151], [ 0.00421392, 0.015716 , 0.02244968], [ 0.01750093, 0.02115849, 0.01491858]], [[ 0.03202804, 0.0409238 , 0.01360283], [-0.00775588, 0.01125095, -0.03788069], [ 0.01289303, 0.00459615, 0.01594723], ..., ... ..., [-0.00605736, 0.00638832, -0.01777219], [-0.0015468 , 0.02003112, -0.03676623], [-0.01219943, 0.01533257, -0.04725824]], [[ 0.03360024, 0.03446592, 0.03699262], [-0.0141114 , -0.00257232, -0.06878331], [ 0.03911067, 0.04103395, 0.06795756], ..., [ 0.06179876, 0.04901743, 0.07049406], [ 0.00814458, 0.00760273, 0.00171805], [-0.03116158, -0.01415311, -0.11120307]], [[ 0.03732969, 0.02478824, 0.05976468], [ 0.01944701, 0.01566222, 0.04757722], [ 0.02900474, 0.04581697, 0.04853083], ..., [ 0.0171826 , 0.01891361, 0.01726273], [ 0.01433668, 0.01098619, 0.04256221], [ 0.02656965, 0.02604265, 0.02600868]]]])
- chainPandasIndex
PandasIndex(Int64Index([0, 1, 2, 3], dtype='int64', name='chain'))
- drawPandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999], dtype='int64', name='draw', length=2000))
- obs_Australia_dim_2PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], dtype='int64', name='obs_Australia_dim_2'))
- obs_Australia_dim_3PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='obs_Australia_dim_3'))
- obs_Canada_dim_2PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], dtype='int64', name='obs_Canada_dim_2'))
- obs_Canada_dim_3PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='obs_Canada_dim_3'))
- obs_Chile_dim_2PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], dtype='int64', name='obs_Chile_dim_2'))
- obs_Chile_dim_3PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='obs_Chile_dim_3'))
- obs_Ireland_dim_2PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], dtype='int64', name='obs_Ireland_dim_2'))
- obs_Ireland_dim_3PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='obs_Ireland_dim_3'))
- obs_New Zealand_dim_2PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40], dtype='int64', name='obs_New Zealand_dim_2'))
- obs_New Zealand_dim_3PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='obs_New Zealand_dim_3'))
- obs_South Africa_dim_2PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], dtype='int64', name='obs_South Africa_dim_2'))
- obs_South Africa_dim_3PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='obs_South Africa_dim_3'))
- obs_United Kingdom_dim_2PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], dtype='int64', name='obs_United Kingdom_dim_2'))
- obs_United Kingdom_dim_3PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='obs_United Kingdom_dim_3'))
- obs_United States_dim_2PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45], dtype='int64', name='obs_United States_dim_2'))
- obs_United States_dim_3PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='obs_United States_dim_3'))
- created_at :
- 2023-02-21T19:31:34.868405
- arviz_version :
- 0.14.0
- inference_library :
- pymc
- inference_library_version :
- 5.0.1
<xarray.Dataset> Dimensions: (chain: 4, draw: 2000, obs_Australia_dim_2: 49, obs_Australia_dim_3: 3, obs_Canada_dim_2: 22, obs_Canada_dim_3: 3, obs_Chile_dim_2: 49, obs_Chile_dim_3: 3, obs_Ireland_dim_2: 49, obs_Ireland_dim_3: 3, obs_New Zealand_dim_2: 41, obs_New Zealand_dim_3: 3, obs_South Africa_dim_2: 49, obs_South Africa_dim_3: 3, obs_United Kingdom_dim_2: 49, obs_United Kingdom_dim_3: 3, obs_United States_dim_2: 46, obs_United States_dim_3: 3) Coordinates: (12/18) * chain (chain) int64 0 1 2 3 * draw (draw) int64 0 1 2 3 4 ... 1996 1997 1998 1999 * obs_Australia_dim_2 (obs_Australia_dim_2) int64 0 1 2 3 ... 46 47 48 * obs_Australia_dim_3 (obs_Australia_dim_3) int64 0 1 2 * obs_Canada_dim_2 (obs_Canada_dim_2) int64 0 1 2 3 4 ... 18 19 20 21 * obs_Canada_dim_3 (obs_Canada_dim_3) int64 0 1 2 ... ... * obs_South Africa_dim_2 (obs_South Africa_dim_2) int64 0 1 2 ... 46 47 48 * obs_South Africa_dim_3 (obs_South Africa_dim_3) int64 0 1 2 * obs_United Kingdom_dim_2 (obs_United Kingdom_dim_2) int64 0 1 2 ... 47 48 * obs_United Kingdom_dim_3 (obs_United Kingdom_dim_3) int64 0 1 2 * obs_United States_dim_2 (obs_United States_dim_2) int64 0 1 2 ... 43 44 45 * obs_United States_dim_3 (obs_United States_dim_3) int64 0 1 2 Data variables: obs_Australia (chain, draw, obs_Australia_dim_2, obs_Australia_dim_3) float64 ... obs_Canada (chain, draw, obs_Canada_dim_2, obs_Canada_dim_3) float64 ... obs_Chile (chain, draw, obs_Chile_dim_2, obs_Chile_dim_3) float64 ... obs_Ireland (chain, draw, obs_Ireland_dim_2, obs_Ireland_dim_3) float64 ... obs_New Zealand (chain, draw, obs_New Zealand_dim_2, obs_New Zealand_dim_3) float64 ... obs_South Africa (chain, draw, obs_South Africa_dim_2, obs_South Africa_dim_3) float64 ... obs_United Kingdom (chain, draw, obs_United Kingdom_dim_2, obs_United Kingdom_dim_3) float64 ... obs_United States (chain, draw, obs_United States_dim_2, obs_United States_dim_3) float64 ... Attributes: created_at: 2023-02-21T19:31:34.868405 arviz_version: 0.14.0 inference_library: pymc inference_library_version: 5.0.1
xarray.Dataset -
- chain: 4
- draw: 2000
- chain(chain)int640 1 2 3
array([0, 1, 2, 3])
- draw(draw)int640 1 2 3 4 ... 1996 1997 1998 1999
array([ 0, 1, 2, ..., 1997, 1998, 1999])
- lp(chain, draw)float64-2.64e+03 -2.628e+03 ... -2.604e+03
array([[-2639.89115833, -2627.55770592, -2634.71443207, ..., -2765.56713392, -2748.95428527, -2735.7959319 ], [-2561.93945366, -2572.71071931, -2564.66514406, ..., -2616.41390537, -2618.61317438, -2623.36681425], [-2618.62600932, -2634.94074369, -2642.66539056, ..., -2653.05805478, -2656.48474006, -2651.63628297], [-2643.62426065, -2633.29142627, -2611.0879038 , ..., -2634.38375437, -2629.36058901, -2603.85800117]])
- diverging(chain, draw)boolFalse False False ... False False
array([[False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False]])
- energy(chain, draw)float64-2.532e+03 ... -2.494e+03
array([[-2531.58065155, -2521.32883239, -2514.6890569 , ..., -2630.50082991, -2637.8246221 , -2628.53079807], [-2441.12079867, -2432.56725591, -2440.74362316, ..., -2522.43066788, -2496.14911007, -2504.88809094], [-2492.78271971, -2519.36678959, -2519.07385537, ..., -2533.16366468, -2536.07235735, -2540.30849264], [-2521.35037416, -2507.4984581 , -2497.56736915, ..., -2527.36637866, -2511.02585969, -2493.66140801]])
- tree_depth(chain, draw)int646 6 6 6 6 6 7 7 ... 6 6 5 6 6 6 6 6
array([[6, 6, 6, ..., 6, 6, 6], [7, 7, 7, ..., 6, 7, 6], [6, 6, 6, ..., 6, 6, 6], [6, 6, 6, ..., 6, 6, 6]])
- n_steps(chain, draw)int6463 63 63 63 63 ... 63 63 63 63 63
array([[ 63, 63, 63, ..., 63, 63, 63], [127, 127, 127, ..., 63, 127, 63], [ 63, 63, 63, ..., 63, 63, 63], [ 63, 63, 63, ..., 63, 63, 63]])
- acceptance_rate(chain, draw)float640.8533 0.9783 ... 0.9693 0.9407
array([[0.85333103, 0.97828366, 0.96105869, ..., 0.98549555, 0.97487632, 0.67458368], [0.95142328, 0.99429708, 0.81421262, ..., 0.97399939, 0.81520905, 0.97292531], [0.92793643, 0.25595475, 0.9103398 , ..., 0.95571164, 0.74282113, 0.99596529], [0.99370679, 0.92069916, 0.8585449 , ..., 0.46255423, 0.96933128, 0.94071658]])
- chainPandasIndex
PandasIndex(Int64Index([0, 1, 2, 3], dtype='int64', name='chain'))
- drawPandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999], dtype='int64', name='draw', length=2000))
- created_at :
- 2023-02-21T19:24:14.274886
- arviz_version :
- 0.14.0
<xarray.Dataset> Dimensions: (chain: 4, draw: 2000) Coordinates: * chain (chain) int64 0 1 2 3 * draw (draw) int64 0 1 2 3 4 5 ... 1994 1995 1996 1997 1998 1999 Data variables: lp (chain, draw) float64 -2.64e+03 -2.628e+03 ... -2.604e+03 diverging (chain, draw) bool False False False ... False False False energy (chain, draw) float64 -2.532e+03 -2.521e+03 ... -2.494e+03 tree_depth (chain, draw) int64 6 6 6 6 6 6 7 7 7 ... 6 6 6 5 6 6 6 6 6 n_steps (chain, draw) int64 63 63 63 63 63 63 ... 31 63 63 63 63 63 acceptance_rate (chain, draw) float64 0.8533 0.9783 ... 0.9693 0.9407 Attributes: created_at: 2023-02-21T19:24:14.274886 arviz_version: 0.14.0
xarray.Dataset -
- chain: 1
- draw: 500
- omega_global_dim_0: 6
- betaX_Canada_dim_0: 22
- betaX_Canada_dim_1: 3
- noise_chol_South Africa_dim_0: 6
- omega_New Zealand_dim_0: 3
- omega_New Zealand_dim_1: 3
- equations: 3
- lags: 2
- cross_vars: 3
- betaX_United States_dim_0: 46
- betaX_United States_dim_1: 3
- noise_chol_United Kingdom_stds_dim_0: 3
- noise_chol_New Zealand_stds_dim_0: 3
- omega_United Kingdom_dim_0: 3
- omega_United Kingdom_dim_1: 3
- omega_Australia_dim_0: 3
- omega_Australia_dim_1: 3
- noise_chol_South Africa_stds_dim_0: 3
- omega_Ireland_dim_0: 3
- omega_Ireland_dim_1: 3
- noise_chol_Chile_corr_dim_0: 3
- noise_chol_Chile_corr_dim_1: 3
- noise_chol_United States_stds_dim_0: 3
- omega_United States_dim_0: 3
- omega_United States_dim_1: 3
- noise_chol_New Zealand_dim_0: 6
- omega_Chile_dim_0: 3
- omega_Chile_dim_1: 3
- noise_chol_United States_dim_0: 6
- noise_chol_United Kingdom_corr_dim_0: 3
- noise_chol_United Kingdom_corr_dim_1: 3
- betaX_United Kingdom_dim_0: 49
- betaX_United Kingdom_dim_1: 3
- betaX_Ireland_dim_0: 49
- betaX_Ireland_dim_1: 3
- omega_South Africa_dim_0: 3
- omega_South Africa_dim_1: 3
- noise_chol_Canada_dim_0: 6
- omega_global_corr_dim_0: 3
- omega_global_corr_dim_1: 3
- betaX_Australia_dim_0: 49
- betaX_Australia_dim_1: 3
- noise_chol_Canada_corr_dim_0: 3
- noise_chol_Canada_corr_dim_1: 3
- noise_chol_Chile_stds_dim_0: 3
- noise_chol_United Kingdom_dim_0: 6
- noise_chol_Australia_dim_0: 6
- betaX_New Zealand_dim_0: 41
- betaX_New Zealand_dim_1: 3
- noise_chol_Australia_corr_dim_0: 3
- noise_chol_Australia_corr_dim_1: 3
- omega_Canada_dim_0: 3
- omega_Canada_dim_1: 3
- noise_chol_Australia_stds_dim_0: 3
- noise_chol_South Africa_corr_dim_0: 3
- noise_chol_South Africa_corr_dim_1: 3
- noise_chol_Ireland_dim_0: 6
- noise_chol_Ireland_corr_dim_0: 3
- noise_chol_Ireland_corr_dim_1: 3
- betaX_Chile_dim_0: 49
- betaX_Chile_dim_1: 3
- omega_global_stds_dim_0: 3
- betaX_South Africa_dim_0: 49
- betaX_South Africa_dim_1: 3
- noise_chol_Canada_stds_dim_0: 3
- noise_chol_New Zealand_corr_dim_0: 3
- noise_chol_New Zealand_corr_dim_1: 3
- noise_chol_United States_corr_dim_0: 3
- noise_chol_United States_corr_dim_1: 3
- noise_chol_Chile_dim_0: 6
- noise_chol_Ireland_stds_dim_0: 3
- chain(chain)int640
array([0])
- draw(draw)int640 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499])
- omega_global_dim_0(omega_global_dim_0)int640 1 2 3 4 5
array([0, 1, 2, 3, 4, 5])
- betaX_Canada_dim_0(betaX_Canada_dim_0)int640 1 2 3 4 5 6 ... 16 17 18 19 20 21
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21])
- betaX_Canada_dim_1(betaX_Canada_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_South Africa_dim_0(noise_chol_South Africa_dim_0)int640 1 2 3 4 5
array([0, 1, 2, 3, 4, 5])
- omega_New Zealand_dim_0(omega_New Zealand_dim_0)int640 1 2
array([0, 1, 2])
- omega_New Zealand_dim_1(omega_New Zealand_dim_1)int640 1 2
array([0, 1, 2])
- equations(equations)<U7'dl_gdp' 'dl_cons' 'dl_gfcf'
array(['dl_gdp', 'dl_cons', 'dl_gfcf'], dtype='<U7')
- lags(lags)int641 2
array([1, 2])
- cross_vars(cross_vars)<U7'dl_gdp' 'dl_cons' 'dl_gfcf'
array(['dl_gdp', 'dl_cons', 'dl_gfcf'], dtype='<U7')
- betaX_United States_dim_0(betaX_United States_dim_0)int640 1 2 3 4 5 6 ... 40 41 42 43 44 45
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45])
- betaX_United States_dim_1(betaX_United States_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_United Kingdom_stds_dim_0(noise_chol_United Kingdom_stds_dim_0)int640 1 2
array([0, 1, 2])
- noise_chol_New Zealand_stds_dim_0(noise_chol_New Zealand_stds_dim_0)int640 1 2
array([0, 1, 2])
- omega_United Kingdom_dim_0(omega_United Kingdom_dim_0)int640 1 2
array([0, 1, 2])
- omega_United Kingdom_dim_1(omega_United Kingdom_dim_1)int640 1 2
array([0, 1, 2])
- omega_Australia_dim_0(omega_Australia_dim_0)int640 1 2
array([0, 1, 2])
- omega_Australia_dim_1(omega_Australia_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_South Africa_stds_dim_0(noise_chol_South Africa_stds_dim_0)int640 1 2
array([0, 1, 2])
- omega_Ireland_dim_0(omega_Ireland_dim_0)int640 1 2
array([0, 1, 2])
- omega_Ireland_dim_1(omega_Ireland_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_Chile_corr_dim_0(noise_chol_Chile_corr_dim_0)int640 1 2
array([0, 1, 2])
- noise_chol_Chile_corr_dim_1(noise_chol_Chile_corr_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_United States_stds_dim_0(noise_chol_United States_stds_dim_0)int640 1 2
array([0, 1, 2])
- omega_United States_dim_0(omega_United States_dim_0)int640 1 2
array([0, 1, 2])
- omega_United States_dim_1(omega_United States_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_New Zealand_dim_0(noise_chol_New Zealand_dim_0)int640 1 2 3 4 5
array([0, 1, 2, 3, 4, 5])
- omega_Chile_dim_0(omega_Chile_dim_0)int640 1 2
array([0, 1, 2])
- omega_Chile_dim_1(omega_Chile_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_United States_dim_0(noise_chol_United States_dim_0)int640 1 2 3 4 5
array([0, 1, 2, 3, 4, 5])
- noise_chol_United Kingdom_corr_dim_0(noise_chol_United Kingdom_corr_dim_0)int640 1 2
array([0, 1, 2])
- noise_chol_United Kingdom_corr_dim_1(noise_chol_United Kingdom_corr_dim_1)int640 1 2
array([0, 1, 2])
- betaX_United Kingdom_dim_0(betaX_United Kingdom_dim_0)int640 1 2 3 4 5 6 ... 43 44 45 46 47 48
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48])
- betaX_United Kingdom_dim_1(betaX_United Kingdom_dim_1)int640 1 2
array([0, 1, 2])
- betaX_Ireland_dim_0(betaX_Ireland_dim_0)int640 1 2 3 4 5 6 ... 43 44 45 46 47 48
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48])
- betaX_Ireland_dim_1(betaX_Ireland_dim_1)int640 1 2
array([0, 1, 2])
- omega_South Africa_dim_0(omega_South Africa_dim_0)int640 1 2
array([0, 1, 2])
- omega_South Africa_dim_1(omega_South Africa_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_Canada_dim_0(noise_chol_Canada_dim_0)int640 1 2 3 4 5
array([0, 1, 2, 3, 4, 5])
- omega_global_corr_dim_0(omega_global_corr_dim_0)int640 1 2
array([0, 1, 2])
- omega_global_corr_dim_1(omega_global_corr_dim_1)int640 1 2
array([0, 1, 2])
- betaX_Australia_dim_0(betaX_Australia_dim_0)int640 1 2 3 4 5 6 ... 43 44 45 46 47 48
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48])
- betaX_Australia_dim_1(betaX_Australia_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_Canada_corr_dim_0(noise_chol_Canada_corr_dim_0)int640 1 2
array([0, 1, 2])
- noise_chol_Canada_corr_dim_1(noise_chol_Canada_corr_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_Chile_stds_dim_0(noise_chol_Chile_stds_dim_0)int640 1 2
array([0, 1, 2])
- noise_chol_United Kingdom_dim_0(noise_chol_United Kingdom_dim_0)int640 1 2 3 4 5
array([0, 1, 2, 3, 4, 5])
- noise_chol_Australia_dim_0(noise_chol_Australia_dim_0)int640 1 2 3 4 5
array([0, 1, 2, 3, 4, 5])
- betaX_New Zealand_dim_0(betaX_New Zealand_dim_0)int640 1 2 3 4 5 6 ... 35 36 37 38 39 40
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40])
- betaX_New Zealand_dim_1(betaX_New Zealand_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_Australia_corr_dim_0(noise_chol_Australia_corr_dim_0)int640 1 2
array([0, 1, 2])
- noise_chol_Australia_corr_dim_1(noise_chol_Australia_corr_dim_1)int640 1 2
array([0, 1, 2])
- omega_Canada_dim_0(omega_Canada_dim_0)int640 1 2
array([0, 1, 2])
- omega_Canada_dim_1(omega_Canada_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_Australia_stds_dim_0(noise_chol_Australia_stds_dim_0)int640 1 2
array([0, 1, 2])
- noise_chol_South Africa_corr_dim_0(noise_chol_South Africa_corr_dim_0)int640 1 2
array([0, 1, 2])
- noise_chol_South Africa_corr_dim_1(noise_chol_South Africa_corr_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_Ireland_dim_0(noise_chol_Ireland_dim_0)int640 1 2 3 4 5
array([0, 1, 2, 3, 4, 5])
- noise_chol_Ireland_corr_dim_0(noise_chol_Ireland_corr_dim_0)int640 1 2
array([0, 1, 2])
- noise_chol_Ireland_corr_dim_1(noise_chol_Ireland_corr_dim_1)int640 1 2
array([0, 1, 2])
- betaX_Chile_dim_0(betaX_Chile_dim_0)int640 1 2 3 4 5 6 ... 43 44 45 46 47 48
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48])
- betaX_Chile_dim_1(betaX_Chile_dim_1)int640 1 2
array([0, 1, 2])
- omega_global_stds_dim_0(omega_global_stds_dim_0)int640 1 2
array([0, 1, 2])
- betaX_South Africa_dim_0(betaX_South Africa_dim_0)int640 1 2 3 4 5 6 ... 43 44 45 46 47 48
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48])
- betaX_South Africa_dim_1(betaX_South Africa_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_Canada_stds_dim_0(noise_chol_Canada_stds_dim_0)int640 1 2
array([0, 1, 2])
- noise_chol_New Zealand_corr_dim_0(noise_chol_New Zealand_corr_dim_0)int640 1 2
array([0, 1, 2])
- noise_chol_New Zealand_corr_dim_1(noise_chol_New Zealand_corr_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_United States_corr_dim_0(noise_chol_United States_corr_dim_0)int640 1 2
array([0, 1, 2])
- noise_chol_United States_corr_dim_1(noise_chol_United States_corr_dim_1)int640 1 2
array([0, 1, 2])
- noise_chol_Chile_dim_0(noise_chol_Chile_dim_0)int640 1 2 3 4 5
array([0, 1, 2, 3, 4, 5])
- noise_chol_Ireland_stds_dim_0(noise_chol_Ireland_stds_dim_0)int640 1 2
array([0, 1, 2])
- omega_global(chain, draw, omega_global_dim_0)float642.027 0.1165 ... -0.05625 1.081
array([[[ 2.02687573, 0.11647196, 0.37456589, -0.05392265, 0.04851504, 0.19494854], [ 1.42338109, -0.7031298 , 1.20526889, -1.10723708, -0.56268989, 0.16130681], [ 0.17172083, 0.13656726, 0.37594241, 0.03902472, -0.33701542, 0.3199291 ], ..., [ 0.49741775, -0.06073033, 0.21288268, 0.04606727, -0.26836034, 0.32224374], [ 4.03165864, -1.5451338 , 1.51594275, -0.09386334, -0.09212436, 0.06404812], [ 2.50023366, 2.99005488, 0.38783897, 0.54857007, -0.05625022, 1.08114627]]])
- betaX_Canada(chain, draw, betaX_Canada_dim_0, betaX_Canada_dim_1)float64-0.02959 -0.03111 ... -0.004869
array([[[[-0.02958802, -0.03111391, -0.02964134], [-0.03755296, -0.04026266, -0.03852361], [-0.03670091, -0.03886219, -0.03409941], ..., [-0.0257217 , -0.02779475, -0.02744646], [-0.01794688, -0.0182232 , -0.02087961], [ 0.00436016, 0.00622635, 0.00900255]], [[-0.0425969 , -0.04366728, -0.04615484], [-0.05258459, -0.05409159, -0.05866094], [-0.04568509, -0.04411511, -0.05134403], ..., [-0.03367277, -0.03391679, -0.03839855], [-0.02211253, -0.02176753, -0.02595201], [ 0.01687551, 0.02297411, 0.01621278]], [[ 0.03378103, 0.0338103 , 0.03402627], [ 0.04220881, 0.04225048, 0.04234694], [ 0.03633951, 0.03654703, 0.03637642], ..., ... ..., [-0.03480167, -0.03707513, -0.03885839], [-0.02075958, -0.02547082, -0.02567666], [ 0.01950194, 0.01199164, 0.01058504]], [[-0.00426948, 0.00734552, -0.00132585], [-0.00391059, 0.00958301, -0.00163274], [-0.00091696, 0.0074017 , 0.00137115], ..., [-0.00132751, 0.00584341, -0.00113681], [-0.00041472, 0.00370545, -0.00094243], [ 0.00809292, -0.00379171, 0.00419078]], [[ 0.01158302, 0.01273005, 0.01295267], [ 0.01457555, 0.01590839, 0.01613327], [ 0.01244839, 0.01370919, 0.01421059], ..., [ 0.00943236, 0.01019738, 0.01032848], [ 0.00635713, 0.00661155, 0.00668655], [-0.004658 , -0.00547512, -0.00486891]]]])
- noise_chol_South Africa(chain, draw, noise_chol_South Africa_dim_0)float641.581 0.2351 ... -0.06042 0.1807
array([[[ 1.58122840e+00, 2.35063162e-01, 1.81065326e+00, 6.69361180e-03, -2.60958004e-03, 3.70879685e-02], [ 3.29713432e+00, 3.28705752e-02, 3.23124184e-01, 3.28256261e-01, -5.83091202e-01, 2.81468551e+00], [ 8.70964317e-01, -1.50781168e-01, 6.64077957e-01, -7.27371344e-02, -1.63955244e-03, 1.80082914e+00], ..., [ 6.62529343e-01, -2.23523154e-01, 1.85091748e+00, 6.98613335e-01, -2.89741836e-02, 2.05858881e+00], [ 2.86182017e-01, 9.22905260e-02, 7.41981134e-01, 4.80310851e-04, 1.42592625e-01, 5.47812994e-01], [ 1.61046635e-01, 8.23376815e-02, 3.18195594e-01, 2.28347316e-02, -6.04202178e-02, 1.80685825e-01]]])
- omega_New Zealand(chain, draw, omega_New Zealand_dim_0, omega_New Zealand_dim_1)float641.235 0.0 0.0 ... -0.05175 0.8164
array([[[[ 1.23475989, 0. , 0. ], [ 0.05707809, 0.18012104, 0. ], [ 0.12814648, -0.14911574, 0.62815169]], [[ 1.12848127, 0. , 0. ], [-0.4626681 , 1.00359328, 0. ], [-0.78412303, -0.38860358, 0.12772782]], [[ 0.3386176 , 0. , 0. ], [ 0.11565954, 1.97196896, 0. ], [ 0.05263391, -0.35786357, 0.85787868]], ..., [[ 0.38447676, 0. , 0. ], [-0.14655631, 0.63812057, 0. ], [-0.351443 , -0.05787807, 1.01881844]], [[ 1.62221937, 0. , 0. ], [-0.22344884, 0.8221504 , 0. ], [ 0.44877203, -0.3211205 , 1.60225819]], [[ 1.65910263, 0. , 0. ], [ 1.69784562, 0.43286907, 0. ], [ 0.32013471, -0.05175294, 0.81644111]]]])
- lag_coefs_United States(chain, draw, equations, lags, cross_vars)float64-0.1935 -0.2252 ... 0.06284 0.05233
array([[[[[-0.19351 , -0.22521912, -0.1517748 ], [-0.24910903, 0.00387421, -0.07808006]], [[-0.21532541, -0.2332341 , -0.36174169], [-0.15914035, -0.19475919, -0.07084988]], [[-0.08980639, -0.12722645, -0.1085578 ], [-0.30059753, -0.20408448, -0.1545564 ]]], [[[-0.18886062, -0.17840099, -0.21103498], [-0.21810999, -0.20734971, -0.20962268]], [[-0.18253502, -0.20026692, -0.20777754], [-0.20243412, -0.21968197, -0.18696931]], [[-0.15498564, -0.19470107, -0.20251693], [-0.19547364, -0.17793239, -0.21758384]]], ... [[[ 0.04566002, 0.04279759, 0.01117736], [-0.02671817, 0.04126656, -0.01548748]], [[ 0.04193849, 0.02128232, -0.19083049], [ 0.00676198, 0.02390407, -0.02639729]], [[ 0.13080941, 0.02435788, -0.00379633], [ 0.12300067, 0.04885043, 0.05568541]]], [[[ 0.05033085, 0.06261057, 0.05781419], [ 0.06337439, 0.05412811, 0.06496625]], [[ 0.0511598 , 0.06752266, 0.07029739], [ 0.06096998, 0.05747771, 0.05488061]], [[ 0.067718 , 0.07093895, 0.05849658], [ 0.05365325, 0.06284001, 0.05232967]]]]])
- betaX_United States(chain, draw, betaX_United States_dim_0, betaX_United States_dim_1)float64-0.01138 -0.004519 ... 0.01024
array([[[[-0.01137667, -0.00451903, -0.02929914], [ 0.01122024, 0.02658823, 0.01367127], [-0.02489871, -0.04786618, -0.01080599], ..., [-0.02015653, -0.03168506, -0.02160832], [-0.02624333, -0.03773096, -0.02704752], [-0.02427429, -0.03359497, -0.02858871]], [[-0.02393938, -0.0220922 , -0.02268617], [ 0.02222772, 0.02050507, 0.02128093], [-0.02215843, -0.02453128, -0.01918522], ..., [-0.02854824, -0.02827249, -0.02690168], [-0.0358828 , -0.03516884, -0.03417038], [-0.03514358, -0.0342643 , -0.03339847]], [[ 0.01788564, 0.01799546, 0.02211616], [-0.01804569, -0.01675939, -0.01407074], [ 0.02058391, 0.02098643, 0.01705385], ..., ... ..., [-0.02512259, -0.03356722, -0.02451416], [-0.03030195, -0.04144246, -0.02974323], [-0.02848949, -0.03989498, -0.02828534]], [[-0.00182867, 0.00674854, 0.01169921], [ 0.00072007, 0.01583485, -0.00239951], [ 0.00724176, -0.00910908, 0.00424258], ..., [ 0.00248719, -0.00567769, 0.00761097], [ 0.00253376, -0.00677438, 0.01002803], [ 0.00192006, -0.00478675, 0.01053876]], [[ 0.00715985, 0.00594686, 0.00593528], [-0.00608821, -0.00651577, -0.00544604], [ 0.00593823, 0.008 , 0.00843259], ..., [ 0.00821864, 0.008629 , 0.00857489], [ 0.01045224, 0.01077109, 0.01067808], [ 0.01024788, 0.01034098, 0.01024373]]]])
- z_scale_alpha_Ireland(chain, draw)float640.5116 0.1397 ... 0.1342 0.2306
array([[0.51158645, 0.13970817, 0.09375044, 0.22546456, 0.11690336, 0.18071698, 0.13085104, 0.12613609, 0.11071867, 0.11863399, 1.01966015, 0.08379751, 0.35997548, 0.09879424, 0.14538562, 0.24479192, 0.32613972, 0.34103393, 0.09204398, 0.15258833, 0.0846486 , 0.16851581, 0.22037281, 0.43876369, 0.27917013, 0.28890463, 0.36907312, 0.06880731, 0.32653339, 0.16650296, 0.67233228, 0.17520708, 0.73168596, 0.17943095, 0.04339154, 0.87860528, 0.0902929 , 0.12554086, 0.05205397, 0.13163887, 0.18812767, 0.28784634, 0.12096629, 0.28414731, 0.30588849, 0.08410933, 0.16007233, 0.07836366, 0.25604716, 0.22755973, 0.08053769, 0.10195325, 0.15135842, 0.23905198, 0.17683231, 0.20688851, 0.16360327, 0.16471266, 0.60683626, 0.41665465, 0.20856958, 0.09474701, 0.17649755, 0.26976955, 0.13058694, 0.22029265, 0.23742807, 0.57035641, 0.1317696 , 0.19482831, 0.19729133, 0.33593179, 0.11966043, 0.13913473, 0.08842925, 0.16272767, 0.09280604, 3.47688008, 0.1381783 , 0.12320211, 0.30030345, 0.31766401, 0.69338639, 0.20337742, 0.2342212 , 0.18209416, 0.7522726 , 0.19758033, 0.76945964, 0.31365889, 0.12344788, 0.76560755, 0.24752784, 0.25957989, 0.09198846, 0.34464921, 0.37336806, 0.10254146, 0.16931808, 0.10916805, ... 0.15973534, 1.17441072, 0.19365826, 0.08147133, 0.16842842, 0.35135656, 0.09271101, 0.14803967, 0.21271489, 0.17090407, 1.31439143, 0.19568287, 0.1324949 , 0.7336209 , 0.08684975, 0.30756519, 0.28528399, 0.61887749, 0.37268476, 0.08006531, 0.26596824, 0.10191996, 0.23494502, 0.73125934, 0.16135043, 0.31041881, 0.24232558, 0.23723761, 0.29023683, 0.27058875, 0.12401297, 0.11695787, 0.13830657, 0.16463358, 0.20700472, 0.14013282, 0.16698267, 0.26857147, 0.18290139, 0.18879111, 0.14139622, 0.20556509, 0.11803317, 0.13828638, 0.10692438, 0.07661694, 0.61984467, 0.22950678, 0.52285373, 0.26827668, 0.27439876, 0.2871008 , 0.0865294 , 0.16514618, 0.11516385, 0.19218968, 0.14700579, 0.58597846, 0.17383473, 0.09574533, 0.35871119, 0.1845075 , 0.14243374, 0.19698913, 0.24377526, 0.41340451, 0.23316587, 0.13564413, 0.2755567 , 0.62852515, 0.26603256, 0.07591389, 0.14888167, 0.5318431 , 0.15210543, 0.13585047, 0.41461438, 0.31654239, 0.18930941, 0.5823387 , 0.13762684, 0.16860118, 0.10612805, 0.18198135, 0.15497983, 0.14827952, 0.08008737, 0.07503787, 0.16820413, 0.06952973, 0.43373073, 0.1333964 , 0.20756783, 0.23637012, 0.11010225, 0.22196761, 0.2610846 , 0.65380877, 0.13424296, 0.23055266]])
- z_scale_beta_United States(chain, draw)float640.2073 0.07694 ... 0.242 0.1381
array([[0.20734036, 0.07693513, 0.18672826, 0.19813901, 0.22038334, 0.16681774, 0.22328428, 0.26010326, 0.2193448 , 1.88297581, 0.11857573, 0.19167814, 0.17406328, 0.2120837 , 0.29897147, 0.1438986 , 0.5631577 , 0.10040927, 0.14017919, 0.14549112, 0.17853873, 0.47852713, 0.15319318, 0.28302628, 0.17486913, 0.29753298, 0.67343941, 0.30223281, 0.20796031, 0.32657908, 0.15982154, 0.07102473, 0.11100181, 0.19291736, 0.11073926, 0.26723373, 0.12051404, 0.17071922, 0.08569388, 0.1487173 , 0.68398926, 1.44224934, 0.07962882, 0.13715676, 0.20909543, 0.41409616, 0.29805412, 0.07817491, 0.55319383, 0.2176259 , 0.09704971, 0.49317679, 0.06315766, 0.08790942, 0.1501398 , 0.21665696, 0.23579709, 0.29819007, 0.3497411 , 0.18464204, 0.1578776 , 0.42834809, 0.09655194, 0.10765619, 0.19653686, 0.23628055, 0.16701936, 0.29582332, 0.08325537, 0.23609906, 0.10505704, 0.23114092, 0.14968839, 0.2302336 , 0.2105364 , 0.67058982, 0.47292089, 0.24122525, 0.19631579, 0.17362513, 0.31328028, 0.2562648 , 0.12718644, 0.46851371, 0.24181609, 0.14474166, 0.30420576, 0.13418311, 0.21842447, 0.2507538 , 0.13666702, 0.23586703, 0.58408083, 0.34207287, 0.11223281, 0.10982336, 0.31975457, 0.22282189, 0.17944722, 0.21874003, ... 0.20688043, 0.47403467, 0.25717756, 0.19066508, 0.12625064, 0.44768237, 0.16660089, 0.0706952 , 0.16784098, 0.36421198, 1.46345517, 0.50179268, 0.1523372 , 0.1956238 , 0.14694697, 0.24004588, 0.11692893, 0.10727995, 1.66596053, 0.18589723, 0.13322186, 0.13850513, 0.09790181, 0.15698714, 0.16617059, 0.09406059, 0.10885364, 0.21139588, 0.16196186, 0.16195316, 0.07182767, 0.31162329, 0.30275279, 0.24104304, 0.12604417, 0.26921645, 0.27088864, 0.15102642, 0.17063538, 0.41558565, 0.10870371, 0.16531107, 0.15824463, 0.32388857, 0.14568043, 0.26336275, 0.13224454, 0.2083225 , 0.04507302, 0.2587414 , 0.26198809, 0.07615262, 0.08256953, 0.21247356, 0.21920917, 0.76939755, 0.20889981, 0.27236234, 0.52139234, 0.14835252, 0.37085224, 0.3050953 , 0.12233382, 0.11905191, 0.33253917, 0.14611272, 0.35574692, 0.11257593, 0.18050403, 0.34533744, 0.22266884, 0.48356926, 0.21836733, 0.1846639 , 0.13248554, 0.26967546, 0.12959754, 0.25059262, 0.17419057, 0.13497309, 0.0906121 , 0.12921711, 0.21698366, 0.20942048, 0.04668369, 0.24006113, 0.064138 , 0.05198891, 0.23646192, 0.53840494, 0.15887142, 0.12730902, 0.52102642, 0.24299043, 0.14601515, 0.10681178, 0.18504517, 0.1231525 , 0.24204206, 0.13810632]])
- z_scale_alpha_New Zealand(chain, draw)float640.1626 0.2047 ... 0.1554 0.1919
array([[0.16257979, 0.20473353, 0.1660467 , 0.07499469, 0.36006641, 0.27578616, 0.33046821, 0.15915183, 0.12910625, 0.13831407, 0.38751857, 0.0874059 , 0.09957618, 0.48866631, 0.19392543, 0.16874209, 0.33632883, 0.71572109, 0.13533204, 0.13084356, 0.17533974, 0.1627762 , 0.41064477, 0.09139926, 0.42826298, 0.24550348, 0.54457365, 0.109875 , 0.13222741, 0.1482109 , 0.15881414, 0.30962614, 0.25116188, 1.26561043, 0.33560544, 0.33325531, 0.40790865, 0.08030093, 0.44762566, 0.2142664 , 0.18684605, 0.15369943, 0.2504877 , 0.15317435, 0.22186467, 0.09589369, 0.12158797, 0.17326896, 0.04194884, 0.1814088 , 0.13621317, 0.30596159, 0.342959 , 0.0943213 , 0.24865241, 0.10509923, 0.08364646, 0.14001044, 0.10834617, 0.40030199, 0.09234299, 0.24991498, 0.13387583, 0.21161424, 0.29525061, 0.78664943, 0.12887164, 0.64957614, 0.19592254, 0.13840067, 0.13675668, 0.30774641, 0.45503469, 0.72828347, 0.08071809, 0.27950943, 0.32301921, 0.26599902, 0.15022287, 0.24510993, 0.27177268, 0.12823048, 0.3827117 , 1.90113199, 0.07435057, 0.33548514, 0.09668177, 0.18994735, 0.17390371, 0.13445681, 0.44980731, 0.20885992, 0.20527302, 0.2798389 , 0.44963417, 0.21717974, 0.09733105, 0.19918713, 0.07762868, 0.13818783, ... 0.25566491, 0.30947523, 0.24619062, 1.89050063, 0.13979159, 0.11169646, 0.13075423, 0.4799055 , 0.1438906 , 0.10359371, 0.23691968, 0.20487274, 0.1360907 , 0.19665027, 0.14693158, 0.45196561, 0.19480535, 0.10585268, 0.32039815, 0.11680072, 0.43485763, 0.13889767, 0.11705017, 0.08644812, 0.08329165, 0.18170034, 0.13523083, 0.39954947, 0.22274435, 0.19364089, 0.22599914, 0.15006166, 0.14756247, 0.28986554, 0.08765432, 0.08399995, 0.11124613, 0.16629054, 0.27270246, 0.12558614, 0.08695939, 0.22951728, 0.19615921, 0.11669168, 0.11381599, 0.71645648, 0.29388051, 0.21441234, 0.18118576, 0.06118888, 0.2243009 , 0.38444353, 0.16246841, 0.15515467, 0.23542627, 0.18778183, 0.22342853, 0.35938595, 0.25569006, 0.32454787, 0.56908536, 0.33990059, 0.11888528, 0.23752101, 0.17677255, 0.37918781, 0.33519036, 0.09408516, 0.1167565 , 0.10384138, 0.28937624, 0.14690894, 0.10925158, 0.25924562, 0.09139761, 0.10794599, 0.15254773, 0.13925995, 0.09375719, 0.15574462, 0.56007416, 0.64587154, 0.1143188 , 0.32715885, 0.21143106, 0.1363281 , 0.09308427, 0.09047241, 0.32805184, 0.16646588, 0.24756532, 0.36085691, 0.14129387, 0.1061752 , 0.12475895, 0.21138747, 0.24721275, 0.15752091, 0.1553929 , 0.19194603]])
- noise_chol_United Kingdom_stds(chain, draw, noise_chol_United Kingdom_stds_dim_0)float640.03717 2.628 ... 0.4055 0.9324
array([[[3.71684705e-02, 2.62803616e+00, 1.89761851e-03], [5.13831503e-01, 9.58806618e-01, 8.79435090e-01], [4.04689556e-01, 2.48416636e-01, 2.04990466e-01], ..., [1.62342154e+00, 9.95776379e-01, 1.13714189e-01], [2.92163436e-01, 2.45445126e-01, 5.07074668e-01], [2.76772440e+00, 4.05453310e-01, 9.32391346e-01]]])
- noise_chol_New Zealand_stds(chain, draw, noise_chol_New Zealand_stds_dim_0)float640.5759 0.01992 ... 0.4947 0.4636
array([[[0.57589167, 0.01992298, 1.07403478], [0.46120014, 0.55327983, 0.07426313], [0.42868234, 2.83517613, 1.20754258], ..., [0.30040541, 0.97758018, 1.67099333], [1.10737718, 0.67647755, 2.04557369], [0.53009693, 0.49466781, 0.46359907]]])
- alpha_United States(chain, draw, equations)float64-0.1123 -0.1273 ... -0.1899 -0.2605
array([[[-0.1122754 , -0.12734704, -0.11031494], [ 0.10359595, 0.12226043, 0.0931555 ], [ 0.23832381, 0.10872559, 0.21367728], ..., [ 0.06169654, 0.04741402, 0.12548373], [-0.18185839, -0.15345144, 0.44086299], [-0.2822267 , -0.18992889, -0.26050735]]])
- omega_United Kingdom(chain, draw, omega_United Kingdom_dim_0, omega_United Kingdom_dim_1)float640.9407 0.0 0.0 ... 0.01623 0.9991
array([[[[ 0.94066212, 0. , 0. ], [ 0.52129994, 1.52615182, 0. ], [-0.02478948, 0.02157187, 0.08940098]], [[ 1.14461231, 0. , 0. ], [-0.41585808, 1.1208319 , 0. ], [-0.80488536, -0.21964174, 0.31724845]], [[ 0.32303426, 0. , 0. ], [-0.02630292, 0.27505622, 0. ], [-0.02302956, -0.13349563, 0.23918957]], ..., [[ 1.1429204 , 0. , 0. ], [-0.0091967 , 0.6614462 , 0. ], [ 0.02132631, -0.11638239, 0.20265227]], [[ 0.95053025, 0. , 0. ], [-0.35868561, 0.44962075, 0. ], [-0.02624491, -0.0391682 , 0.42833245]], [[ 2.61443627, 0. , 0. ], [ 1.65874467, 0.38647794, 0. ], [ 0.20439408, 0.01622911, 0.99906375]]]])
- omega_Australia(chain, draw, omega_Australia_dim_0, omega_Australia_dim_1)float642.798 0.0 0.0 ... -0.01649 0.6657
array([[[[ 2.79849438, 0. , 0. ], [ 0.05129535, 0.33119208, 0. ], [-0.00809379, 0.18551762, 0.38975745]], [[ 2.19888565, 0. , 0. ], [-0.2283893 , 1.44020266, 0. ], [-0.74426769, -0.49472631, 0.45332848]], [[ 0.17032368, 0. , 0. ], [ 0.05269687, 0.78212657, 0. ], [ 0.04829656, -0.12379496, 0.29457698]], ..., [[ 0.51430996, 0. , 0. ], [-0.02749578, 0.10576037, 0. ], [ 0.01963391, -0.10862464, 0.156789 ]], [[ 1.94167524, 0. , 0. ], [-0.25907015, 0.36416895, 0. ], [-0.00998854, 0.13205535, 1.79311081]], [[ 1.92090981, 0. , 0. ], [ 1.64235627, 0.50585178, 0. ], [ 0.31495163, -0.016493 , 0.66569132]]]])
- lag_coefs_Australia(chain, draw, equations, lags, cross_vars)float64-0.1962 -0.04238 ... 0.05701 0.0538
array([[[[[-0.1961536 , -0.04238493, -0.02241971], [-0.15077542, -0.21313777, -0.09135567]], [[-0.19894081, -0.23320756, -0.27911626], [ 0.0578797 , -0.30527527, -0.22313689]], [[-0.22023162, 0.03049929, -0.00585038], [-0.1296688 , -0.12040214, -0.09948174]]], [[[-0.22891816, -0.1967858 , -0.21468313], [-0.2100601 , -0.24386615, -0.17782713]], [[-0.25126413, -0.20889774, -0.18437045], [-0.20418875, -0.20383443, -0.19456342]], [[-0.22720345, -0.18963524, -0.2048201 ], [-0.2082145 , -0.18245376, -0.1971739 ]]], ... [[[ 0.04336268, 0.03602578, 0.03023212], [ 0.04924396, -0.01320222, 0.00612381]], [[ 0.00549566, 0.01761463, -0.01967821], [ 0.03505736, 0.01685139, -0.00436121]], [[ 0.01222543, 0.02852398, 0.03352444], [ 0.01152931, -0.0016901 , -0.01869344]]], [[[ 0.07208268, 0.04829299, 0.07349987], [ 0.06538528, 0.05084192, 0.06645425]], [[ 0.07066286, 0.06578292, 0.06102497], [ 0.0391673 , 0.053377 , 0.04046732]], [[ 0.0664287 , 0.06745102, 0.05934131], [ 0.05570972, 0.0570131 , 0.05380317]]]]])
- z_scale_beta_New Zealand(chain, draw)float640.1596 0.3191 ... 0.09559 0.1677
array([[0.1595764 , 0.31909431, 0.14984458, 0.473567 , 0.30314647, 0.41680411, 0.14055266, 0.21443999, 0.28680193, 0.207827 , 0.12470213, 0.27358584, 0.15877701, 0.1766966 , 0.31672804, 0.34511963, 0.20636382, 0.17567789, 0.37350301, 0.16425487, 0.44202529, 0.17671469, 1.0025769 , 0.17129725, 0.11397575, 0.36668509, 0.12703921, 0.31440648, 0.65616426, 0.27927965, 0.07146724, 0.29072444, 0.30097163, 0.42272131, 0.50763782, 0.11535842, 0.19219011, 0.08155474, 0.14333571, 0.10171381, 0.16189723, 0.09084773, 0.18996573, 0.28882752, 0.5236453 , 0.6868979 , 0.26741783, 0.08599283, 0.13714952, 0.32331594, 0.85861371, 0.13800996, 0.56831276, 0.15072784, 0.14006245, 0.18924386, 0.16490975, 0.2730547 , 1.81338977, 0.21590061, 0.13114485, 0.19547382, 0.30880499, 0.11408552, 0.18137243, 0.48850668, 0.35926686, 0.11678598, 0.18221083, 0.0764939 , 0.59665507, 0.16989122, 0.10456052, 0.28523524, 0.52829938, 0.63250685, 0.11275178, 0.47830736, 0.20330458, 0.05676593, 0.22213268, 0.37820405, 0.11673709, 0.15349803, 0.13847562, 0.45858207, 0.28596827, 0.09620013, 0.09036497, 0.06405045, 0.20398546, 0.19810778, 0.09165543, 0.15941918, 0.28383069, 0.16264909, 0.24714102, 0.41887418, 0.11412962, 0.22608534, ... 0.09466267, 0.32698251, 0.24179005, 0.17866664, 0.14031657, 0.14328991, 0.18572951, 0.18990388, 0.23515911, 0.45604518, 0.05824148, 0.16369792, 0.0536564 , 0.14770094, 0.49495615, 0.10217579, 0.11772349, 0.07809962, 0.14428259, 0.17064257, 0.13764948, 0.18450781, 0.17910942, 0.24048955, 0.13946675, 0.21332236, 0.08934233, 0.12498345, 0.08966867, 0.24637675, 0.1822877 , 0.19826166, 0.11381018, 0.25234185, 0.1336435 , 0.09102639, 0.92209292, 0.27710708, 0.24156467, 0.13801857, 0.36776389, 0.15985224, 0.44076973, 0.14350409, 0.19963751, 0.70209226, 0.18562798, 0.19088137, 0.10218107, 0.19664039, 0.10636086, 0.24755424, 0.25374839, 0.06738148, 0.21254131, 0.56908049, 0.34745447, 0.44286962, 0.21850306, 0.21384828, 0.1672484 , 0.34116064, 0.16123007, 0.10147714, 0.61500581, 0.17133974, 0.60976176, 0.12176558, 0.16685053, 0.06602818, 0.18366747, 0.14912495, 0.14119082, 0.22471715, 0.25352004, 0.63217796, 0.38316989, 0.77526843, 0.14541542, 0.12339019, 0.0495911 , 0.28415788, 0.184606 , 0.59120927, 0.13984808, 0.42151482, 0.54217349, 0.1484539 , 0.11815923, 0.11127211, 0.29087105, 0.13832078, 0.2819072 , 0.13687175, 0.49502223, 0.18897839, 0.07491648, 0.06200944, 0.09559076, 0.16772793]])
- alpha_New Zealand(chain, draw, equations)float64-0.1341 -0.1184 ... -0.309 -0.2621
array([[[-0.13411454, -0.11837157, -0.09823672], [ 0.06188021, 0.03255268, 0.06646392], [ 0.20641065, 0.1379772 , 0.19274663], ..., [ 0.09546404, 0.06121229, 0.03803407], [ 0.05411883, 0.02830194, 0.05475787], [-0.26640311, -0.30904358, -0.26214372]]])
- lag_coefs_Ireland(chain, draw, equations, lags, cross_vars)float64-0.1868 -0.1527 ... 0.06407 0.05551
array([[[[[-0.18678705, -0.15265051, -0.14907884], [-0.18391385, -0.18808559, -0.12134384]], [[-0.19569234, -0.24607583, -0.17957038], [-0.16946666, -0.14072849, -0.21832593]], [[-0.17528042, -0.21988379, -0.17378612], [-0.19794297, -0.15543846, -0.12668154]]], [[[-0.20297659, -0.19835389, -0.22150673], [-0.21533709, -0.21462178, -0.21762576]], [[-0.22332784, -0.20240641, -0.21523745], [-0.1852436 , -0.21375762, -0.19681 ]], [[-0.20094811, -0.201738 , -0.2196669 ], [-0.18584382, -0.19476701, -0.19170025]]], ... [[[ 0.17158737, 0.17518965, 0.05365764], [-0.01095842, 0.06114475, 0.02548319]], [[-0.0470689 , 0.08979091, 0.04993573], [ 0.05302195, -0.01399206, 0.05093116]], [[-0.07491731, 0.07711348, 0.02723354], [ 0.07700294, -0.00584274, 0.07558744]]], [[[ 0.06073059, 0.05678287, 0.0623281 ], [ 0.05840248, 0.05519933, 0.06312752]], [[ 0.05587671, 0.06360262, 0.05175008], [ 0.06448157, 0.04623022, 0.06312355]], [[ 0.05817472, 0.06320071, 0.04800966], [ 0.06643841, 0.06407291, 0.05550688]]]]])
- noise_chol_South Africa_stds(chain, draw, noise_chol_South Africa_stds_dim_0)float641.581 1.826 ... 0.3287 0.1919
array([[[1.5812284 , 1.82584772, 0.0377774 ], [3.29713432, 0.3247918 , 2.89313015], [0.87096432, 0.68098054, 1.80229825], ..., [0.66252934, 1.86436534, 2.17409475], [0.28618202, 0.74769883, 0.5660671 ], [0.16104663, 0.32867603, 0.19188381]]])
- alpha_South Africa(chain, draw, equations)float64-0.1202 -0.1137 ... -0.2432 -0.2544
array([[[-0.12022232, -0.11367182, -0.10794469], [ 0.07282995, 0.04322713, 0.06724012], [ 0.06996945, 0.14752209, 0.16313593], ..., [ 0.11707275, 0.05555555, -0.16032398], [ 0.04373721, 0.09431552, 0.04430106], [-0.26879254, -0.24317041, -0.25442029]]])
- omega_Ireland(chain, draw, omega_Ireland_dim_0, omega_Ireland_dim_1)float642.586 0.0 0.0 ... 0.0008263 0.8505
array([[[[ 2.58639628e+00, 0.00000000e+00, 0.00000000e+00], [ 4.09927426e-01, 1.35269659e+00, 0.00000000e+00], [-5.37619633e-02, 2.44418105e-02, 1.83495101e-01]], [[ 1.18559436e+00, 0.00000000e+00, 0.00000000e+00], [-4.93503902e-01, 1.07422866e+00, 0.00000000e+00], [-7.72675644e-01, -3.98223351e-01, 1.55929365e-01]], [[ 5.19799071e-01, 0.00000000e+00, 0.00000000e+00], [ 3.33304174e-02, 1.56625045e+00, 0.00000000e+00], [-8.12668016e-02, -7.65072574e-02, 4.02325125e-01]], ..., [[ 9.03289140e-01, 0.00000000e+00, 0.00000000e+00], [-8.16329007e-02, 7.61894507e-01, 0.00000000e+00], [ 2.95952632e-01, -3.81254889e-01, 1.64034000e+00]], [[ 1.99897232e+00, 0.00000000e+00, 0.00000000e+00], [-2.06124180e-01, 7.66606308e-01, 0.00000000e+00], [-1.73635520e-02, 1.48188438e-01, 8.50744813e-01]], [[ 1.95106390e+00, 0.00000000e+00, 0.00000000e+00], [ 1.74963152e+00, 4.01199909e-01, 0.00000000e+00], [ 3.53497383e-01, 8.26304021e-04, 8.50474997e-01]]]])
- lag_coefs_United Kingdom(chain, draw, equations, lags, cross_vars)float64-0.3605 -0.1986 ... 0.06297 0.06245
array([[[[[-0.36052092, -0.19860953, 0.02177938], [-0.03464429, -0.09187011, -0.43320885]], [[ 0.03266122, 0.05491349, -0.33003956], [-0.24663718, -0.32606953, -0.15747561]], [[-0.0260827 , -0.12671588, -0.25819839], [ 0.00386647, 0.06725576, -0.38870329]]], [[[-0.26505344, -0.20221769, -0.2292391 ], [-0.19091368, -0.24630777, -0.16210045]], [[-0.15381381, -0.24810409, -0.16861722], [-0.14581489, -0.19537078, -0.19954608]], [[-0.22349155, -0.19670298, -0.18637268], [-0.14958251, -0.14433438, -0.2048611 ]]], ... [[[ 0.0037063 , 0.07384256, 0.0575044 ], [-0.04287917, 0.07976311, -0.00292942]], [[ 0.04505964, -0.00613842, 0.08048952], [-0.01867705, 0.01364884, -0.078449 ]], [[-0.0179588 , 0.02668368, -0.02074897], [ 0.04733557, -0.04998428, -0.04249807]]], [[[ 0.06611016, 0.04871902, 0.05118372], [ 0.0757195 , 0.05552676, 0.06288292]], [[ 0.0604792 , 0.06258736, 0.05946574], [ 0.06521125, 0.0639017 , 0.06616612]], [[ 0.04742713, 0.07416921, 0.04645026], [ 0.05075313, 0.06297496, 0.06244988]]]]])
- alpha_Canada(chain, draw, equations)float64-0.1172 -0.1188 ... -0.2555 -0.2642
array([[[-0.11724578, -0.11883244, -0.11291433], [ 0.05042853, 0.05767736, 0.10802469], [ 0.21811029, 0.23366782, 0.20019744], ..., [ 0.13969839, 0.04808045, 0.10640985], [ 0.06852303, 0.07106682, 0.06308139], [-0.23532934, -0.25552875, -0.26415459]]])
- z_scale_beta_Ireland(chain, draw)float640.07163 0.08413 ... 0.3716 0.1233
array([[0.07163329, 0.08413478, 0.08755404, 0.23453179, 0.30542108, 0.43203706, 0.11621525, 0.22725081, 0.14066017, 0.06447647, 0.18195441, 0.2979855 , 0.25577131, 0.07385324, 0.14376264, 0.12304787, 0.83388509, 0.11786395, 0.17542277, 0.13408145, 0.27892992, 0.11153842, 0.13897429, 0.14334591, 0.13401484, 0.14252127, 0.39030187, 0.15815744, 0.07312245, 0.13120768, 0.22964085, 0.19894006, 0.10616301, 0.15233651, 0.45655982, 0.1301663 , 0.972213 , 0.24668618, 0.22498558, 0.22384238, 0.19722808, 0.21387158, 0.34359696, 0.07736254, 0.14463155, 1.0583714 , 0.12364719, 0.16719231, 0.10613701, 0.13767955, 0.23892066, 0.17893978, 0.33054068, 0.12373109, 0.18793181, 0.82859709, 0.45311229, 0.18805356, 0.1728399 , 0.15028426, 0.25672119, 0.18429149, 0.24616073, 0.19184509, 0.11043875, 0.21774424, 0.18178512, 0.17160492, 0.14600922, 0.32059958, 0.19876657, 0.4457766 , 1.14460319, 0.31732579, 0.29761875, 0.05390961, 0.12838263, 0.26261061, 1.29202241, 0.13479564, 0.18347114, 0.14445945, 0.11380765, 0.23588144, 0.28325807, 0.06268906, 0.24010887, 0.08551197, 0.14933643, 0.31853377, 0.28051309, 0.13742563, 0.17363697, 0.17822277, 0.12570658, 0.22254829, 0.11654764, 0.31638426, 0.1752214 , 0.06424156, ... 0.18017406, 0.25107532, 0.14125656, 0.1340293 , 0.15143401, 0.17979784, 0.10230655, 0.09610106, 0.23308408, 0.16685291, 0.35500314, 0.11487525, 0.14464978, 0.42393198, 0.91474375, 0.11772092, 0.51607064, 0.13537261, 0.11358025, 0.11583106, 0.19417048, 0.13565478, 0.23522559, 0.0905361 , 0.10013519, 0.19108106, 0.16220839, 0.32430115, 0.07865016, 0.28852676, 0.18530219, 0.26364345, 0.05486286, 0.29282799, 0.10392355, 0.49220611, 0.15431847, 0.08114926, 0.46771052, 0.27909326, 0.21189142, 0.11080887, 0.49201439, 0.20806369, 0.3919624 , 0.29717214, 0.08647545, 0.1629127 , 0.11928048, 0.10979854, 0.1155407 , 0.29554581, 0.16796259, 0.77389029, 0.16345719, 0.35637281, 0.09542406, 0.39445065, 0.23896037, 0.13337993, 0.13671295, 0.06786871, 0.15321679, 0.64859899, 0.1688205 , 0.16550456, 0.28892148, 1.02925402, 0.12911254, 0.44169065, 1.09725051, 0.12139197, 0.15877436, 0.53522059, 0.25541761, 2.50454558, 0.16618171, 0.54993892, 0.29564516, 0.12609919, 0.1834574 , 0.61799822, 0.10576515, 0.53324708, 1.50356317, 0.26191044, 0.41923726, 0.08723944, 0.30142969, 0.06410624, 0.20717064, 0.08829394, 0.10641084, 0.65765017, 0.42985316, 0.08507945, 0.24317143, 0.16548908, 0.37164655, 0.12326749]])
- noise_chol_Chile_corr(chain, draw, noise_chol_Chile_corr_dim_0, noise_chol_Chile_corr_dim_1)float641.0 -0.1709 0.1487 ... -0.3751 1.0
array([[[[ 1. , -0.17090528, 0.14869546], [-0.17090528, 1. , 0.21319977], [ 0.14869546, 0.21319977, 1. ]], [[ 1. , -0.39296326, 0.24200419], [-0.39296326, 1. , -0.07165122], [ 0.24200419, -0.07165122, 1. ]], [[ 1. , -0.03235085, 0.37344916], [-0.03235085, 1. , 0.03250628], [ 0.37344916, 0.03250628, 1. ]], ..., [[ 1. , -0.25233108, -0.34355138], [-0.25233108, 1. , 0.07825342], [-0.34355138, 0.07825342, 1. ]], [[ 1. , 0.30324589, 0.23548559], [ 0.30324589, 1. , 0.29728758], [ 0.23548559, 0.29728758, 1. ]], [[ 1. , -0.27067426, 0.05400277], [-0.27067426, 1. , -0.37509298], [ 0.05400277, -0.37509298, 1. ]]]])
- noise_chol_United States_stds(chain, draw, noise_chol_United States_stds_dim_0)float641.025 2.018 0.5789 ... 0.619 0.2143
array([[[1.02485906, 2.01769132, 0.57885858], [0.12223676, 0.34959891, 0.81983802], [1.81531772, 1.2366803 , 2.8199029 ], ..., [0.63896902, 0.23374696, 3.08903391], [0.93403749, 1.1745727 , 0.23355354], [0.91164171, 0.61897674, 0.21429496]]])
- omega_United States(chain, draw, omega_United States_dim_0, omega_United States_dim_1)float641.48 0.0 0.0 ... -0.002397 0.7022
array([[[[ 1.4798585 , 0. , 0. ], [ 0.07280083, 1.27139482, 0. ], [-0.0490548 , 0.15088609, 0.3760185 ]], [[ 1.02459204, 0. , 0. ], [-0.49268994, 0.94289404, 0. ], [-0.73130831, -0.31803447, 0.34975097]], [[ 1.23923872, 0. , 0. ], [-0.10186104, 0.92091395, 0. ], [ 0.07675077, 0.7677725 , 1.71391872]], ..., [[ 0.57856465, 0. , 0. ], [-0.02838119, 0.22482083, 0. ], [-0.66458456, -0.06387396, 1.77003816]], [[ 1.47939746, 0. , 0. ], [-0.32124116, 1.23342166, 0. ], [-0.02755179, -0.00738831, 0.20319158]], [[ 1.82199953, 0. , 0. ], [ 1.80787964, 0.46908523, 0. ], [ 0.28886718, -0.00239748, 0.70220697]]]])
- lag_coefs_New Zealand(chain, draw, equations, lags, cross_vars)float64-0.2065 -0.1456 ... 0.06747 0.05084
array([[[[[-0.20654316, -0.14562934, -0.26288777], [-0.16641344, -0.15950696, -0.11481519]], [[-0.25234332, -0.10828001, -0.192556 ], [-0.13940197, -0.2283368 , -0.12041435]], [[-0.1208677 , -0.23817163, -0.19558745], [-0.13492058, -0.06619099, -0.21045424]]], [[[-0.32770078, -0.10647709, -0.2173961 ], [-0.11299811, -0.09182672, -0.25010002]], [[-0.15915056, -0.28384819, -0.15889862], [-0.10944911, -0.20428178, -0.22873497]], [[-0.18243547, -0.21476259, -0.08634329], [-0.19036886, -0.1796177 , -0.19128967]]], ... [[[ 0.02159585, 0.03169854, 0.02494288], [ 0.01473301, 0.02966987, -0.01652773]], [[ 0.01446537, -0.00331149, 0.00869062], [ 0.00396315, -0.01732477, 0.01578873]], [[ 0.03041103, 0.01238237, 0.01386057], [ 0.00996718, 0.07574674, 0.02485907]]], [[[ 0.04620779, 0.05968816, 0.06256686], [ 0.04269093, 0.059605 , 0.05580936]], [[ 0.05003254, 0.06448281, 0.06014105], [ 0.06150055, 0.05707461, 0.06059594]], [[ 0.05997411, 0.0561341 , 0.05838696], [ 0.06310736, 0.06746523, 0.05083574]]]]])
- z_scale_beta_Australia(chain, draw)float640.2788 0.1047 ... 0.08373 0.2213
array([[0.27881565, 0.10469813, 0.1211257 , 0.25124204, 0.16018028, 0.23515602, 0.16096252, 0.29431363, 0.98003321, 0.15331914, 0.09585257, 0.09113346, 0.0837121 , 0.1312792 , 0.88342217, 0.164084 , 0.44128772, 0.37055024, 0.07643875, 0.24940322, 0.2673004 , 0.18368429, 0.33493299, 0.1157403 , 0.1971344 , 0.60712343, 0.1726061 , 0.16856774, 0.09592041, 0.12013222, 0.1370233 , 0.2426129 , 0.30202182, 0.28234465, 0.71192041, 0.05518795, 0.21404515, 0.14405558, 0.155575 , 0.26943012, 0.28554819, 0.09805847, 0.09992052, 0.19794793, 0.31936183, 0.10023596, 0.07385885, 0.26026719, 0.25966287, 0.15740078, 0.28298877, 0.23618574, 0.10719332, 0.18815603, 0.19847085, 0.09465452, 0.13741752, 0.14836489, 0.25264099, 0.41073982, 0.08606129, 0.12396397, 0.31378118, 0.12070497, 0.51071 , 0.23677943, 0.18116091, 0.20819466, 0.17827292, 0.17258466, 0.15612765, 0.12282135, 0.18750847, 0.14498828, 0.10212388, 0.19377678, 0.31166066, 0.10249523, 0.27172758, 0.42374111, 1.27183713, 0.21220824, 0.18636243, 0.31130914, 0.10902415, 0.10676085, 0.12933155, 0.35427775, 0.25906178, 0.53339082, 0.22363702, 0.34051648, 0.15133265, 0.13279198, 0.14951954, 0.14884373, 0.44572052, 0.20747406, 0.24888566, 0.1628897 , ... 0.10074804, 0.24566984, 0.14527515, 0.21195912, 0.29674904, 0.39399415, 0.24526314, 0.16635332, 0.12266914, 0.11014299, 0.11756377, 0.19903654, 0.13099525, 0.20033183, 0.1225756 , 0.15833845, 0.07301871, 0.10099471, 0.26370506, 0.09525833, 0.25715513, 0.22447191, 0.7251473 , 0.24861478, 0.06885664, 0.11701662, 0.4595473 , 0.8219404 , 0.19257692, 0.34735225, 0.18519346, 0.1219051 , 0.28037848, 0.23374819, 0.18555476, 0.20611156, 0.20997989, 0.13054928, 0.41153894, 0.29190641, 0.32473762, 0.09319944, 0.22788271, 0.11747517, 0.08590645, 0.35781655, 0.10869864, 0.26159247, 0.205304 , 0.32638852, 0.15692531, 0.3650207 , 0.16708497, 0.1859105 , 0.09055496, 0.18565301, 0.28684467, 0.12816474, 0.2203393 , 0.28199904, 0.26975798, 0.15679835, 0.07407453, 0.16824704, 0.3836013 , 0.05707429, 0.20832219, 0.10882047, 0.94681812, 0.10141334, 0.17883141, 0.42572401, 0.15002428, 0.2590692 , 0.125405 , 0.1197349 , 0.41379128, 0.47283222, 0.22757644, 0.2949491 , 0.17909723, 0.34026183, 0.17221909, 0.11406275, 0.17099736, 0.32597273, 0.16747589, 0.09508129, 0.65332027, 0.13359989, 0.47814597, 0.07304196, 0.08927572, 0.15589993, 0.23143155, 0.28141908, 0.19219578, 0.11351882, 0.08373141, 0.22127545]])
- noise_chol_New Zealand(chain, draw, noise_chol_New Zealand_dim_0)float640.5759 0.007675 ... -0.04572 0.4611
array([[[ 0.57589167, 0.0076753 , 0.01838518, 0.27958843, -0.31350159, 0.98848256], [ 0.46120014, 0.08143382, 0.54725415, -0.05300044, 0.00530818, 0.05174736], [ 0.42868234, 0.10437683, 2.83325416, 0.05997802, -0.36911415, 1.14817963], ..., [ 0.30040541, -0.2104437 , 0.95466039, -0.64734286, 0.09880133, 1.53733673], [ 1.10737718, 0.05896507, 0.67390281, 0.56472082, -0.37005175, 1.93093858], [ 0.53009693, -0.03661856, 0.49331058, 0.01351801, -0.04571649, 0.46114137]]])
- omega_Chile(chain, draw, omega_Chile_dim_0, omega_Chile_dim_1)float640.936 0.0 0.0 ... -0.09397 0.7722
array([[[[ 9.36020417e-01, 0.00000000e+00, 0.00000000e+00], [ 1.52401959e-02, 3.87128043e-01, 0.00000000e+00], [ 4.37408784e-02, 1.33147881e-01, 5.28437735e-01]], [[ 1.04733738e+00, 0.00000000e+00, 0.00000000e+00], [-5.38931203e-01, 9.55919656e-01, 0.00000000e+00], [-7.35513836e-01, -3.86820347e-01, 2.41585067e-01]], [[ 3.26869831e+00, 0.00000000e+00, 0.00000000e+00], [ 3.30205840e-02, 5.90436206e-01, 0.00000000e+00], [ 5.97951794e-01, -4.83281138e-02, 1.56179601e+00]], ..., [[ 2.14014411e-01, 0.00000000e+00, 0.00000000e+00], [-5.36481580e-01, 2.04876587e+00, 0.00000000e+00], [-2.37240883e-02, -1.15618572e-01, 2.56096869e-01]], [[ 8.57876950e-01, 0.00000000e+00, 0.00000000e+00], [ 8.80571205e-04, 1.12448908e+00, 0.00000000e+00], [ 2.98983373e-01, 3.01371030e-01, 1.27409569e+00]], [[ 1.56441016e+00, 0.00000000e+00, 0.00000000e+00], [ 1.52603411e+00, 8.88917038e-01, 0.00000000e+00], [ 3.23267111e-01, -9.39733478e-02, 7.72182687e-01]]]])
- z_scale_alpha_Australia(chain, draw)float640.2135 0.558 ... 0.1505 0.283
array([[0.21349685, 0.55798781, 0.89276486, 0.0929538 , 0.16229627, 0.12217945, 0.19102479, 0.12181753, 0.26815972, 0.12455234, 0.14814762, 0.13467901, 0.31316463, 0.38224019, 0.09268671, 0.28875773, 0.17290106, 0.08494782, 0.16675921, 0.18716972, 0.0906609 , 0.39631931, 0.13631636, 0.12975208, 0.18477318, 0.13932279, 0.10940528, 1.07689583, 0.11714862, 0.35288666, 0.46205462, 0.17280418, 0.15916952, 0.08627822, 0.39790241, 0.16470455, 0.34617587, 0.29920837, 0.45214034, 0.25277276, 0.31529658, 0.0796127 , 0.12027817, 0.2970992 , 0.18230463, 0.30367395, 0.10165875, 0.25707323, 0.34925061, 0.13220736, 0.13025155, 0.17074058, 0.09000912, 0.32023614, 0.0934971 , 0.15784082, 0.25430052, 0.32815974, 0.16281204, 0.16189498, 0.0796007 , 0.20408872, 0.15960882, 0.19821208, 0.10822714, 0.31919547, 0.4725085 , 0.1297642 , 0.13783116, 0.16311501, 0.07950005, 0.16803838, 0.22591461, 0.1850961 , 0.41528212, 0.23679564, 0.27401552, 0.13444167, 0.22487896, 0.10652259, 0.12493599, 0.21251467, 0.15683186, 0.11963954, 0.24229907, 0.18876937, 0.19871174, 0.1161395 , 0.16222612, 0.17238744, 0.25550942, 0.23321398, 0.11471119, 0.15866093, 0.18912152, 0.268599 , 0.20141053, 0.23590482, 0.11265815, 0.16831428, ... 0.32098438, 0.33982917, 0.15818539, 0.1181535 , 0.13422332, 0.10383103, 0.15148347, 0.27367008, 0.37663366, 0.65801811, 0.22779821, 0.12107004, 0.14691564, 0.1583824 , 0.13815032, 0.29145257, 0.1324747 , 0.71650209, 0.08977658, 0.25536085, 0.23384534, 0.24988145, 0.11220109, 0.51525044, 0.16830479, 0.1459533 , 0.25387926, 0.61865403, 2.39769012, 0.14074619, 0.38246219, 0.19007745, 0.10237864, 0.08020918, 0.2269304 , 0.15385598, 0.1881944 , 0.12722658, 0.68554785, 0.29884224, 0.26259276, 0.29588416, 0.08275737, 0.4399304 , 0.21779385, 0.66440144, 0.08841264, 0.21978646, 0.18137905, 0.11109064, 0.53287206, 0.07603271, 0.24072975, 0.35999341, 0.23792117, 0.22200911, 0.12065137, 0.13772612, 0.21153311, 0.38971295, 0.07261891, 0.2049971 , 0.25216086, 0.32072983, 0.29977723, 0.46945961, 0.22070712, 0.49405479, 0.21245975, 0.8270608 , 0.09507272, 0.13288111, 0.16609586, 0.1783188 , 0.20623537, 0.23260991, 0.26462791, 0.71120718, 0.12302289, 0.19987558, 0.12040077, 0.15655036, 0.1692955 , 0.11366119, 0.07819533, 0.09425215, 0.16759718, 0.30319109, 0.2926074 , 0.09344479, 0.16946023, 0.24534464, 0.17671518, 0.26588803, 0.26731759, 0.06168833, 0.11848901, 0.12463534, 0.15053058, 0.28295018]])
- noise_chol_United States(chain, draw, noise_chol_United States_dim_0)float641.025 0.03648 ... 0.06989 0.1936
array([[[ 1.02485906, 0.03647595, 2.01736158, -0.0450058 , 0.23603656, 0.52662935], [ 0.12223676, -0.01651957, 0.3492084 , 0.11932015, 0.23555674, 0.77615083], [ 1.81531772, -0.2305273 , 1.21500425, 0.09710938, 1.36396402, 2.46617604], ..., [ 0.63896902, -0.00430105, 0.23370739, -1.19358163, 0.08834221, 2.84775158], [ 0.93403749, -0.05972324, 1.17305335, -0.01338253, 0.01071785, 0.23292336], [ 0.91164171, 0.22110833, 0.5781378 , -0.05971827, 0.06988621, 0.19357679]]])
- lag_coefs_South Africa(chain, draw, equations, lags, cross_vars)float64-0.2365 -0.1754 ... 0.05666 0.05853
array([[[[[-0.23653396, -0.17535764, -0.19259883], [-0.23701861, -0.10574879, -0.19480722]], [[-0.19592983, -0.12407823, -0.17365097], [-0.15210075, -0.07545554, -0.21088623]], [[-0.25404572, -0.21689502, -0.16918229], [-0.12288923, -0.14146429, -0.19812718]]], [[[-0.25672551, -0.22618817, -0.18411549], [-0.24591878, -0.27018902, -0.27187515]], [[-0.22940812, -0.1967032 , -0.19118466], [-0.23785843, -0.18149571, -0.20791851]], [[-0.18135597, -0.17611271, -0.28292983], [-0.20437799, -0.1659736 , -0.24030227]]], ... [[[ 0.00319377, 0.03971881, 0.04003112], [ 0.07366218, -0.03378931, 0.14260651]], [[-0.03996608, -0.00224961, -0.03843742], [ 0.01421821, -0.01586986, -0.05962431]], [[ 0.00375386, 0.1397171 , 0.09193438], [-0.06978229, -0.10550759, -0.09893312]]], [[[ 0.03846222, 0.06165028, 0.0582391 ], [ 0.04459164, 0.05316985, 0.05482073]], [[ 0.0377817 , 0.06268424, 0.08046469], [ 0.04958416, 0.05165488, 0.06246147]], [[ 0.03785436, 0.05958385, 0.05252461], [ 0.05541533, 0.05665948, 0.05853228]]]]])
- z_scale_beta_Canada(chain, draw)float640.206 0.1572 0.062 ... 0.2 0.1907
array([[0.20597835, 0.15715561, 0.062 , 0.21010669, 0.28258379, 0.11517814, 0.30118359, 0.48763144, 0.37490842, 0.08627406, 0.08519334, 0.11332028, 0.27016606, 0.1155351 , 0.12088698, 0.43648722, 0.24707822, 0.12911647, 0.18902934, 0.15183204, 0.32300672, 0.2541712 , 0.15232288, 0.20628871, 0.32135944, 0.21188144, 0.10275504, 0.20189652, 0.11160093, 0.16513119, 0.27321642, 0.17276446, 0.590317 , 0.21623107, 0.16032405, 0.1484018 , 0.23818659, 0.15288073, 0.16149012, 0.12235722, 0.09850244, 0.12354564, 0.13699863, 0.35075085, 0.67227034, 0.31109322, 0.06269607, 0.26313699, 0.44222567, 0.31281536, 0.64379277, 0.09593582, 0.16328929, 0.6698961 , 0.12044611, 0.26743635, 0.22373021, 0.67184493, 0.07137944, 0.48541162, 0.31137895, 0.13695403, 0.19946058, 0.21471459, 0.2345619 , 0.19579824, 0.12624404, 0.18195879, 0.2321122 , 0.18688321, 0.17116901, 0.42275027, 0.22626851, 0.08654082, 0.21525921, 0.06693556, 0.20763649, 0.18333726, 0.5773455 , 0.08616333, 0.37190231, 0.20615889, 0.52651009, 0.19026844, 0.08872785, 0.12709443, 0.13739737, 0.29774602, 0.19083827, 0.08953584, 0.24023509, 0.18150133, 0.1622077 , 0.10278121, 0.28490485, 0.79936355, 0.10746417, 0.72094253, 0.13005678, 0.1692404 , ... 0.12591114, 0.09727694, 0.12564752, 0.13456127, 0.14667568, 0.37183583, 0.11748543, 0.15256233, 0.45761602, 0.19443811, 0.42583561, 0.50855639, 0.53799702, 0.18945073, 0.94775416, 0.22755719, 0.15736608, 0.19850553, 0.20375117, 0.29020824, 0.24507071, 0.13249971, 0.68559728, 0.12291209, 0.14090839, 0.0674714 , 0.62049209, 0.42207586, 0.1717535 , 0.13568536, 0.09318577, 0.08745766, 0.18766408, 0.25468481, 0.1937421 , 0.1074329 , 0.39462298, 0.17551673, 0.14620555, 0.09398065, 0.21262622, 0.32647654, 0.13420811, 0.18585891, 0.49753251, 0.15809565, 0.05227775, 0.1335445 , 0.13660069, 0.27004503, 0.15732034, 0.36840803, 0.15603986, 0.34394718, 0.08431872, 0.27838542, 0.71138281, 0.5397544 , 0.23548402, 0.22775199, 0.14072805, 0.85468932, 0.08632006, 0.13319566, 0.16904253, 0.16330327, 0.11303598, 0.14150272, 0.19259192, 0.39271348, 0.20441471, 0.20754252, 0.21929124, 0.8280654 , 0.17102702, 0.10245022, 0.16402004, 0.17161117, 0.33091494, 0.16519594, 0.60766513, 0.06786667, 0.16778956, 0.39310014, 0.21843639, 0.10776247, 0.09070453, 0.65914102, 0.11487672, 0.19322548, 0.12971926, 0.11234246, 0.75772232, 0.24139028, 0.08129723, 0.09606349, 0.24675547, 0.1075058 , 0.20003389, 0.19066278]])
- noise_chol_United Kingdom_corr(chain, draw, noise_chol_United Kingdom_corr_dim_0, noise_chol_United Kingdom_corr_dim_1)float641.0 0.3265 -0.2935 ... 0.2028 1.0
array([[[[ 1. , 0.3264905 , -0.29353167], [ 0.3264905 , 1. , -0.51373321], [-0.29353167, -0.51373321, 1. ]], [[ 1. , 0.24422305, -0.13729554], [ 0.24422305, 1. , 0.58019564], [-0.13729554, 0.58019564, 1. ]], [[ 1. , -0.45969038, -0.27570427], [-0.45969038, 1. , 0.02420394], [-0.27570427, 0.02420394, 1. ]], ..., [[ 1. , 0.02928775, 0.02558654], [ 0.02928775, 1. , -0.02784166], [ 0.02558654, -0.02784166, 1. ]], [[ 1. , -0.42848156, -0.02326362], [-0.42848156, 1. , -0.03966232], [-0.02326362, -0.03966232, 1. ]], [[ 1. , -0.31619581, -0.27625219], [-0.31619581, 1. , 0.20284884], [-0.27625219, 0.20284884, 1. ]]]])
- betaX_United Kingdom(chain, draw, betaX_United Kingdom_dim_0, betaX_United Kingdom_dim_1)float64-0.03942 -0.0173 ... -0.01429
array([[[[-3.94200727e-02, -1.72960150e-02, -1.37328921e-02], [-3.79317591e-02, -4.53373613e-02, -2.01338350e-02], [-2.39758091e-02, -3.66182392e-02, -1.42564510e-02], ..., [-2.57352036e-02, -1.30193541e-02, -1.42700677e-02], [-1.16573145e-02, -1.03436958e-02, -2.65486491e-03], [ 4.80652990e-02, 1.31812110e-02, 4.02105108e-02]], [[-4.04344934e-02, -3.59703964e-02, -3.45494651e-02], [-6.36351531e-02, -5.01866228e-02, -5.03541000e-02], [-2.18118174e-02, -2.24104271e-02, -1.87514300e-02], ..., [-2.07125734e-02, -1.93613847e-02, -1.90652796e-02], [-1.71725392e-02, -1.41379985e-02, -1.35063678e-02], [ 6.01759801e-02, 4.93910828e-02, 5.36831375e-02]], [[ 2.86682966e-02, 3.20268398e-02, 2.95692942e-02], [ 4.34325441e-02, 4.73849063e-02, 4.35284843e-02], [ 1.99255126e-02, 1.57083928e-02, 1.93408830e-02], ..., ... ..., [-2.69771117e-03, -3.64429604e-02, -3.27062402e-02], [-7.03103807e-04, -9.22475180e-03, -2.57338713e-02], [ 1.53851564e-01, 1.53041658e-01, -7.31188951e-03]], [[ 5.40793655e-03, -2.38576597e-04, -8.11218187e-06], [ 1.03659910e-02, 7.67184162e-03, -1.98821601e-03], [-7.38141253e-04, -8.13952392e-03, -1.55442008e-03], ..., [ 1.52258812e-03, -2.18115754e-03, -8.41467136e-04], [ 2.58704937e-03, 1.07263009e-03, -5.18633926e-05], [-1.26991250e-02, -1.22900297e-02, 7.60138700e-04]], [[ 1.12116387e-02, 1.17415215e-02, 1.12632551e-02], [ 1.62448204e-02, 1.71448738e-02, 1.54098057e-02], [ 8.47609120e-03, 8.30410186e-03, 7.59920840e-03], ..., [ 6.37787667e-03, 6.54341701e-03, 6.11904745e-03], [ 4.55178811e-03, 4.75105435e-03, 4.43108902e-03], [-1.37622991e-02, -1.54251835e-02, -1.42899188e-02]]]])
- alpha_United Kingdom(chain, draw, equations)float64-0.105 -0.1099 ... -0.2986 -0.2771
array([[[-0.10504847, -0.10987787, -0.11568448], [ 0.05049984, 0.06462595, 0.07323632], [ 0.20993419, 0.19883819, 0.19144551], ..., [ 0.04368448, 0.12319567, 0.05689683], [ 0.05776521, 0.01628855, 0.02436099], [-0.30739603, -0.2986272 , -0.27708257]]])
- betaX_Ireland(chain, draw, betaX_Ireland_dim_0, betaX_Ireland_dim_1)float64-0.05636 -0.07013 ... 0.03163
array([[[[-5.63613585e-02, -7.01316530e-02, -6.07409557e-02], [-7.25515457e-02, -8.76718177e-02, -7.97842750e-02], [-3.35471778e-02, -4.36230850e-02, -3.12771740e-02], ..., [-2.84617300e-02, -2.71654585e-02, -2.82291463e-02], [-1.30542441e-01, -1.43708806e-01, -1.49224861e-01], [-6.41395282e-02, -1.16062421e-01, -5.64768311e-02]], [[-7.58390921e-02, -7.40291967e-02, -7.16683955e-02], [-9.79737904e-02, -9.47430625e-02, -9.29247926e-02], [-4.43584884e-02, -4.15387463e-02, -3.80020949e-02], ..., [-2.78143551e-02, -2.78437093e-02, -2.50561363e-02], [-1.78090695e-01, -1.74201825e-01, -1.75912371e-01], [-1.12888189e-01, -9.96055527e-02, -9.29263820e-02]], [[ 5.83024323e-02, 5.87612745e-02, 5.83082381e-02], [ 7.41351914e-02, 7.57836883e-02, 7.48976492e-02], [ 3.80233060e-02, 3.32594997e-02, 3.44645598e-02], ..., ... ..., [ 6.82319001e-03, -6.97506458e-03, -1.45017860e-02], [-3.27922716e-01, -1.86692288e-01, -1.46732649e-01], [-2.23884865e-02, -1.32983562e-01, -9.27375381e-02]], [[ 2.90661497e-02, 1.13429741e-02, 1.04601173e-02], [ 3.25599336e-02, 1.78357114e-02, 1.61005972e-02], [ 1.33529018e-02, 3.72229383e-03, 1.03354929e-02], ..., [ 1.74939468e-02, -1.17313520e-03, 1.33576926e-04], [ 5.17234887e-02, 3.52299281e-02, 1.78026406e-02], [ 6.07970992e-03, 1.66774566e-02, 4.01917905e-02]], [[ 2.14802003e-02, 2.05715801e-02, 2.06112919e-02], [ 2.75169822e-02, 2.60570226e-02, 2.61178648e-02], [ 1.24896653e-02, 1.34676256e-02, 1.41815825e-02], ..., [ 7.84468179e-03, 8.97218835e-03, 1.01794491e-02], [ 4.97487964e-02, 4.26521968e-02, 4.17659545e-02], [ 3.29057445e-02, 3.49353835e-02, 3.16323974e-02]]]])
- z_scale_alpha_South Africa(chain, draw)float640.1016 0.1248 ... 0.1378 0.07456
array([[0.10158372, 0.12483101, 0.51288006, 0.15688106, 0.36685966, 0.1977919 , 0.15267253, 0.19591569, 0.59390305, 0.85488895, 0.10587033, 0.21915306, 0.1623386 , 0.5986583 , 0.16613045, 0.67263342, 0.11661068, 0.32518286, 1.5361486 , 1.45709589, 0.1294471 , 0.47819553, 0.15264436, 0.44517857, 0.10923452, 0.16646303, 0.10647573, 0.0892792 , 0.14177543, 0.27333858, 0.13350324, 0.08810627, 0.26110173, 0.0919285 , 0.09816649, 0.26209278, 0.0764066 , 0.04830488, 0.40724656, 0.12750582, 0.31631358, 0.14794213, 0.37235809, 0.25241872, 0.12788007, 0.13404573, 0.17880159, 0.36286645, 0.51347296, 0.15289694, 0.21073588, 0.23397541, 0.43315221, 0.10431045, 0.5654643 , 0.41999103, 0.40271515, 0.15731881, 0.14442823, 0.12233247, 0.54836549, 0.59848302, 0.2114371 , 0.26221595, 0.47246925, 0.3137886 , 0.10494884, 0.12912805, 0.18391246, 0.12884373, 0.15274523, 0.3725999 , 0.12177836, 0.24943004, 0.17295438, 0.1309844 , 1.8084263 , 0.186108 , 0.15504212, 0.27137544, 0.42143829, 0.19261572, 0.39520666, 0.22817145, 0.11095781, 0.15273024, 0.50592954, 0.09639036, 0.06401957, 0.21317518, 0.07973296, 0.17947608, 0.09611679, 0.29737776, 0.06023055, 0.14621088, 0.16808568, 0.15571004, 0.12821163, 0.40133051, ... 0.08203337, 0.45353632, 0.12209597, 0.16200809, 0.31780427, 0.22325601, 0.11873745, 0.08931568, 0.14336465, 0.23646683, 0.10727013, 0.09932834, 0.18313903, 0.10980764, 0.21582747, 0.10017599, 0.09735297, 0.23616385, 0.14951644, 0.06934906, 0.21301649, 0.11839936, 0.1319655 , 0.10892052, 0.22106444, 0.47243188, 0.34067691, 0.11456418, 0.08852128, 0.15495958, 0.22919555, 0.18288511, 0.34971504, 0.25516174, 0.1457496 , 0.39572965, 0.6039811 , 0.12686073, 0.17295965, 0.15575192, 0.0565876 , 0.10520198, 0.21569628, 0.25940171, 0.63693879, 0.18781137, 0.09305883, 0.25714287, 0.15878983, 0.44034101, 0.11823393, 0.13136161, 0.20973821, 1.42332463, 0.21302649, 0.2226954 , 0.27316585, 0.14044902, 0.53966122, 0.1195044 , 0.150667 , 0.23497026, 0.11131538, 0.20400561, 0.11954057, 0.18559815, 0.30009964, 0.17376405, 0.16068921, 0.09253434, 0.60062737, 0.2703372 , 0.07692366, 0.09411692, 0.26417048, 0.09748224, 0.11672049, 0.13086781, 0.20560368, 0.20239755, 0.08500308, 0.22931061, 0.11815733, 0.32180559, 0.2216965 , 0.72182278, 0.12920471, 0.34160552, 0.48694934, 0.31786736, 0.18793372, 0.15005929, 0.20836772, 0.42221041, 0.12569971, 0.16010514, 0.13736873, 0.30613186, 0.13783877, 0.07455761]])
- omega_South Africa(chain, draw, omega_South Africa_dim_0, omega_South Africa_dim_1)float641.784 0.0 0.0 ... -0.05803 0.6967
array([[[[ 1.78358959, 0. , 0. ], [ 0.18121283, 1.15854938, 0. ], [-0.02083124, 0.02060528, 0.10876988]], [[ 1.99766962, 0. , 0. ], [-0.4775523 , 0.93489946, 0. ], [-0.66727127, -0.56894271, 0.97454354]], [[ 0.6258802 , 0. , 0. ], [-0.05006584, 0.56308675, 0. ], [-0.03356472, -0.11918844, 1.28177522]], ..., [[ 0.59207105, 0. , 0. ], [-0.15405435, 1.15191665, 0. ], [ 0.42015146, -0.13112777, 1.3176359 ]], [[ 0.94560191, 0. , 0. ], [-0.19599059, 0.87824301, 0. ], [-0.01612961, 0.1012689 , 0.46264248]], [[ 1.50154014, 0. , 0. ], [ 1.74863285, 0.3581054 , 0. ], [ 0.3241124 , -0.05803056, 0.6967033 ]]]])
- z_scale_beta_United Kingdom(chain, draw)float640.3233 0.1573 ... 0.1529 0.2527
array([[0.32329421, 0.1573022 , 0.18395888, 0.31115335, 0.08793985, 0.64458887, 0.08426981, 0.1739706 , 0.25291676, 0.40157056, 0.1272336 , 0.2048703 , 0.82405807, 1.0602077 , 0.30134718, 0.27591026, 0.11990954, 0.22748406, 0.1296425 , 0.03586132, 0.18854633, 0.13555937, 0.15987621, 0.20211453, 0.96087343, 0.13200587, 0.35302074, 0.16344653, 0.27828552, 0.0784578 , 0.20021474, 0.1040394 , 0.26592825, 0.15760564, 0.25392231, 0.4902283 , 0.21793767, 0.48491566, 0.18729284, 0.30805642, 0.32554183, 0.1028073 , 0.1974544 , 0.36962696, 0.12917224, 0.11429995, 0.23014723, 0.12717217, 0.17021359, 0.42686837, 0.51873028, 0.14007854, 0.1921737 , 0.138695 , 0.16323093, 0.37369897, 0.28539739, 0.26873964, 0.16324976, 0.46518 , 0.15825429, 0.15334833, 0.11715296, 0.56726684, 0.3316949 , 0.22294716, 0.08289984, 0.20016843, 0.08728106, 0.36024453, 0.4137913 , 0.21460476, 0.08989952, 0.62251973, 0.09447217, 1.09391803, 0.18945414, 0.28841037, 0.13869962, 0.16524337, 0.10166989, 0.05820755, 0.37717556, 0.16057303, 0.26310522, 0.21005783, 0.34844353, 0.15838789, 0.15406413, 0.29755489, 0.32437052, 0.41087799, 0.1377247 , 0.08347871, 0.50160563, 0.113767 , 0.13644536, 0.09342668, 0.27791361, 0.17950133, ... 0.11099167, 0.23969892, 0.12262426, 0.1755397 , 0.24322786, 0.11843434, 0.38237235, 0.21831319, 0.05396117, 0.23099262, 0.20061547, 0.19406781, 0.17941891, 0.08188348, 0.1880668 , 0.51481259, 0.20328566, 0.70005929, 0.15409202, 0.3034517 , 0.37492744, 0.12686545, 0.12791117, 0.67418773, 0.32532571, 0.07088648, 0.32204798, 0.16968474, 0.17607128, 0.19494038, 0.11102617, 0.18283606, 0.20243548, 0.35749114, 0.16571656, 0.14121779, 0.34345642, 0.1701505 , 0.07026001, 0.44226981, 0.17050301, 0.22328302, 0.22484323, 0.09580508, 0.33943649, 0.32584451, 0.14876404, 0.56129836, 0.50985411, 0.20187562, 0.27118215, 0.14051975, 0.15176628, 0.51159659, 0.19814433, 0.32667369, 0.05378582, 0.07843321, 0.11752381, 0.10458065, 0.11609248, 0.06791563, 0.29600561, 0.45469787, 0.11424575, 0.18505702, 0.08807271, 0.19533745, 0.12638563, 0.10660988, 0.09380297, 0.14078204, 0.05021521, 0.11993517, 0.30265546, 0.24492029, 0.23754694, 0.12969476, 0.37838559, 0.26103451, 0.57541725, 0.11774033, 0.90168756, 0.12440032, 0.12350289, 0.18303855, 0.49137428, 0.17835225, 0.21784502, 0.14457128, 0.08277858, 0.25047164, 0.14644423, 0.11178635, 0.08588925, 0.18190685, 0.75139059, 0.51204172, 0.15293603, 0.25272013]])
- noise_chol_Canada(chain, draw, noise_chol_Canada_dim_0)float641.104 -0.06141 ... 0.3915 0.9881
array([[[ 1.10440523e+00, -6.14109927e-02, 8.22749881e-01, 1.02356729e-01, -3.51431230e-02, 1.75236206e+00], [ 1.58393068e-01, -2.09363094e-01, 1.81394898e+00, -1.47916702e-02, 1.84719694e-03, 1.02419234e-01], [ 1.08584398e-01, -3.50908298e-01, 2.43234781e+00, -2.89296391e-02, -1.37607379e-01, 1.16846656e+00], ..., [ 6.75563536e-01, -2.71357075e-01, 3.83127860e+00, 5.39568575e-01, 7.32348991e-02, 1.76801481e+00], [ 3.21172324e+00, 1.80240754e-02, 1.19982287e+00, 8.23736425e-02, 2.21532656e-01, 1.48254113e+00], [ 9.42435758e-01, -2.09670521e-01, 5.32329692e-01, -3.01572098e-01, 3.91459628e-01, 9.88126253e-01]]])
- beta_hat_scale(chain, draw)float640.445 0.253 ... 0.2568 0.04878
array([[0.44503705, 0.25302872, 0.09734064, 0.08140516, 0.09403591, 0.53281248, 0.28569491, 0.06927693, 0.23716861, 0.48898782, 0.12018069, 0.32561429, 0.11594634, 0.11938186, 0.18987112, 0.05024414, 0.31705729, 0.36470701, 0.23925633, 0.13041001, 0.82218282, 0.08605663, 0.43065183, 0.43511532, 0.42329363, 0.23868226, 0.14223661, 0.18942365, 0.11064443, 0.17979744, 0.08929333, 0.08621157, 0.22297356, 0.32616151, 0.42752162, 0.33973567, 0.26361747, 0.33651065, 0.30514592, 0.6040292 , 0.30559007, 0.2764355 , 0.1030149 , 0.2478419 , 0.1149303 , 0.17284634, 0.12390858, 0.11802487, 0.12523576, 0.08518932, 0.24107197, 0.20765158, 0.17661285, 0.27904944, 0.23839197, 0.48257666, 0.09528768, 0.11454373, 0.29407864, 0.26232946, 0.75598757, 0.16745614, 0.11830287, 0.10899471, 0.27860523, 0.20970053, 0.19249533, 0.13234794, 0.10192466, 0.05061725, 0.09358496, 0.16118725, 0.09068751, 0.16353462, 0.14521383, 0.1080347 , 0.20866713, 0.24090732, 0.43486484, 0.18934286, 0.23082179, 0.24133749, 0.1685625 , 0.06079055, 0.23491592, 0.21468027, 0.12939244, 0.32378068, 0.21257374, 0.17706071, 0.14395569, 0.3012523 , 0.08673807, 0.20119311, 0.24151278, 1.02288321, 0.21913009, 0.11876808, 0.13561561, 0.22144594, ... 0.38661143, 0.49959209, 0.33899083, 0.28879166, 0.16437471, 0.25944415, 0.26070646, 0.14659932, 0.2987469 , 0.16546793, 0.54347232, 0.15610741, 0.32850537, 0.14202903, 0.46403254, 0.20134906, 0.14092558, 0.31915747, 0.1083041 , 0.06595824, 0.12607071, 0.32347699, 0.18128918, 0.20217098, 0.15515703, 0.07901812, 0.0957816 , 0.69466819, 0.17602688, 0.14354201, 0.15914825, 0.27937793, 0.35717692, 0.25445324, 0.06645117, 0.52638452, 0.28862398, 0.182403 , 0.10244508, 0.28279983, 0.20290727, 0.67652985, 0.19440047, 0.07835929, 0.25447417, 0.09081237, 0.13050397, 0.12495608, 0.89505844, 0.2964415 , 0.12699845, 0.31185433, 0.21496858, 0.13297115, 0.0998401 , 0.17609794, 0.24341781, 0.49670671, 0.38368282, 0.11393543, 0.08738413, 0.14064452, 0.14818658, 0.21655171, 0.26690996, 0.28877758, 0.12789248, 0.17698881, 0.06163298, 0.21681181, 0.10022167, 0.6127 , 0.18760715, 0.16731792, 0.14341602, 0.1900311 , 0.12648602, 0.0819759 , 0.18701306, 0.53192278, 0.08351364, 0.17312503, 0.19946883, 0.21985174, 0.07079137, 0.28623224, 0.15362624, 0.18702488, 0.61049313, 0.36899625, 0.10071906, 0.07739268, 0.24766829, 0.11793443, 0.13010391, 0.17038084, 0.07135453, 1.03649588, 0.25679807, 0.04878009]])
- omega_global_corr(chain, draw, omega_global_corr_dim_0, omega_global_corr_dim_1)float641.0 0.2969 -0.2592 ... 0.4423 1.0
array([[[[ 1. , 0.29692789, -0.25923662], [ 0.29692789, 1. , 0.14574549], [-0.25923662, 0.14574549, 1. ]], [[ 1. , -0.50390112, -0.88406178], [-0.50390112, 1. , 0.05741437], [-0.88406178, 0.05741437, 1. ]], [[ 1. , 0.34143595, 0.08368607], [ 0.34143595, 1. , -0.65070387], [ 0.08368607, -0.65070387, 1. ]], ..., [[ 1. , -0.27433149, 0.10919589], [-0.27433149, 1. , -0.6416615 ], [ 0.10919589, -0.6416615 , 1. ]], [[ 1. , -0.71381744, -0.6416458 ], [-0.71381744, 1. , 0.01697827], [-0.6416458 , 0.01697827, 1. ]], [[ 1. , 0.99169239, 0.45199652], [ 0.99169239, 1. , 0.44227972], [ 0.45199652, 0.44227972, 1. ]]]])
- z_scale_beta_Chile(chain, draw)float640.3099 0.319 ... 0.1535 0.249
array([[0.30990536, 0.31898127, 0.46805575, 1.46775288, 0.31189055, 0.29670148, 0.12160982, 0.21345929, 0.28993789, 0.07594419, 0.17217328, 0.14362066, 0.42858227, 0.18093675, 0.31762323, 0.08629456, 0.08945899, 0.12837699, 0.30115755, 0.24399574, 0.17697334, 0.0704102 , 0.19864746, 0.37872674, 0.18952204, 0.17068355, 0.06265502, 0.35056743, 0.16200572, 0.16669569, 0.12729406, 0.17905708, 0.12424471, 0.19146932, 0.32778996, 0.22980471, 0.2034019 , 0.14299723, 0.07957804, 0.12835942, 0.13764474, 0.11565458, 0.26232806, 0.14814521, 0.06457627, 0.12113411, 0.142652 , 0.14084364, 0.21478267, 0.32992681, 0.2477339 , 0.21158255, 0.5724395 , 0.25254504, 0.4214072 , 0.1466429 , 0.43787646, 0.07259178, 0.56152386, 0.27947568, 1.55597931, 0.12504306, 0.11720669, 0.28814203, 0.23095757, 0.59749398, 0.19761514, 0.10450226, 0.25204799, 0.23369357, 0.59321525, 0.11224511, 0.14313231, 0.1937793 , 0.72057527, 0.12585264, 0.09828015, 0.1590817 , 0.33499431, 0.15217841, 0.92295021, 0.51095889, 0.27241345, 0.25733832, 0.06198806, 0.1485592 , 0.20171744, 0.36242288, 0.18339561, 0.15778783, 0.40656022, 0.13442682, 0.35546348, 0.53646324, 0.22447086, 0.22082826, 0.35280804, 0.28602613, 0.25661764, 0.18910331, ... 0.17809947, 0.36406137, 0.10420537, 0.08386398, 0.13171774, 0.1779471 , 0.25193476, 0.07719311, 0.25698288, 0.07146643, 0.19145748, 0.07357926, 0.18635246, 0.30343246, 0.152774 , 0.18638894, 0.46796965, 0.50509979, 0.10939796, 0.35368413, 0.10356129, 0.18410041, 0.16715199, 0.19867206, 0.34242053, 0.15595651, 0.34579875, 0.13957914, 0.13643082, 0.32962603, 0.44742806, 0.12325874, 0.24707 , 0.20842144, 0.15227183, 0.18973992, 0.08675561, 0.40103028, 0.15597983, 0.0843263 , 0.39750353, 0.11267465, 0.13539262, 0.60783435, 0.13182377, 0.40304187, 0.09901869, 0.21478436, 1.25552176, 0.15233609, 0.20822934, 0.26070483, 0.18185246, 0.14669762, 0.08624216, 0.07059232, 0.28667757, 0.1052545 , 0.27464558, 0.95117541, 0.48424707, 0.15908758, 0.46374762, 0.19377645, 0.07026614, 0.47954379, 0.27252315, 0.09018434, 0.09685043, 0.74444211, 0.14658351, 0.20068838, 0.17096532, 0.1126428 , 0.63954626, 0.53113693, 0.38469789, 0.221623 , 0.18916632, 0.06957461, 0.09160466, 0.05415353, 0.20477535, 0.19636591, 0.21163338, 0.04727546, 0.42889752, 1.94669786, 0.47964026, 0.26143897, 0.08786324, 0.12047803, 0.15553462, 0.17466272, 0.65884565, 0.14780694, 0.14465865, 0.2293884 , 0.15349672, 0.24900105]])
- betaX_Australia(chain, draw, betaX_Australia_dim_0, betaX_Australia_dim_1)float64-0.02716 -0.04112 ... 7.089e-05
array([[[[-2.71631337e-02, -4.11209056e-02, -2.06149307e-02], [-2.37026713e-02, -3.87175835e-02, -1.67115989e-02], [-2.68779372e-02, -5.04349934e-02, -1.89863050e-02], ..., [-1.76051608e-02, -3.32686837e-02, -1.21494546e-02], [-1.95325150e-02, -2.38321889e-02, -1.56259155e-02], [-6.34610944e-03, 4.72511321e-03, -4.29248487e-03]], [[-4.57268446e-02, -4.48644831e-02, -4.31727789e-02], [-4.27550145e-02, -4.17061760e-02, -4.03159647e-02], [-4.99334261e-02, -4.88492687e-02, -4.69735667e-02], ..., [-3.42849440e-02, -3.24920082e-02, -3.16742955e-02], [-2.80948391e-02, -2.87194875e-02, -2.71145462e-02], [-1.75129213e-03, -1.15958062e-03, -2.66442705e-04]], [[ 3.66348357e-02, 3.60079149e-02, 3.46216391e-02], [ 3.45002324e-02, 3.39491167e-02, 3.26298453e-02], [ 3.98914082e-02, 3.92686230e-02, 3.78749625e-02], ..., ... ..., [-3.93991174e-02, -3.25176960e-02, -1.39060936e-02], [-1.84757090e-02, -3.13568524e-02, -1.07089047e-02], [-1.91136119e-03, -1.30694417e-03, 1.82679994e-03]], [[ 5.41213322e-03, 2.23393602e-03, 2.23527329e-03], [ 5.14878836e-03, 2.14668584e-03, 2.41120458e-03], [ 5.82424046e-03, 1.83661445e-03, 3.07894010e-03], ..., [ 4.40988044e-03, 1.03347356e-03, 2.96765783e-03], [ 2.68659013e-03, 2.06077366e-03, -9.73468885e-05], [-2.74763707e-04, 1.61254037e-03, -5.17438623e-04]], [[ 1.33079716e-02, 1.18015094e-02, 1.28730283e-02], [ 1.23619639e-02, 1.10674498e-02, 1.21157449e-02], [ 1.44231024e-02, 1.34265145e-02, 1.42602060e-02], ..., [ 9.88310291e-03, 9.24608458e-03, 9.57381238e-03], [ 8.17092213e-03, 6.82380882e-03, 7.99997718e-03], [-3.12477776e-04, -2.25905479e-04, 7.08883444e-05]]]])
- noise_chol_Canada_corr(chain, draw, noise_chol_Canada_corr_dim_0, noise_chol_Canada_corr_dim_1)float641.0 -0.07443 0.0583 ... 0.4297 1.0
array([[[[ 1. , -0.07443409, 0.05829965], [-0.07443409, 1. , -0.02430053], [ 0.05829965, -0.02430053, 1. ]], [[ 1. , -0.11465723, -0.14291699], [-0.11465723, 1. , 0.03411636], [-0.14291699, 0.03411636, 1. ]], [[ 1. , -0.14278903, -0.02458128], [-0.14278903, 1. , -0.11221584], [-0.02458128, -0.11221584, 1. ]], ..., [[ 1. , -0.07064978, 0.29166406], [-0.07064978, 1. , 0.01888224], [ 0.29166406, 0.01888224, 1. ]], [[ 1. , 0.01502059, 0.05486956], [ 0.01502059, 1. , 0.14837172], [ 0.05486956, 0.14837172, 1. ]], [[ 1. , -0.36647139, -0.27296569], [-0.36647139, 1. , 0.42971006], [-0.27296569, 0.42971006, 1. ]]]])
- alpha_hat_location(chain, draw)float64-0.1142 0.06737 ... 0.06274 -0.2666
array([[-1.14215881e-01, 6.73702220e-02, 1.91390197e-01, -1.16041416e-02, -1.24930644e-02, 1.73151022e-01, 1.62079891e-02, -9.84983370e-02, -1.83338972e-01, 2.73037779e-02, 8.03824509e-02, -7.74581290e-02, -2.33151633e-01, 2.11686594e-01, -1.26425955e-01, 1.92428012e-01, 3.05683152e-02, -5.16687825e-02, 3.15888205e-01, -1.57532143e-01, 1.22378583e-01, -1.08112679e-01, 5.23449912e-02, 4.31351949e-02, -1.42511344e-02, 5.19508807e-02, 1.92124314e-02, 1.28942591e-02, -7.49653882e-03, 1.90296410e-01, -7.17142579e-02, -6.71235689e-02, -7.51747078e-02, 1.11586049e-01, 7.90522444e-02, -1.18764713e-01, 1.19181240e-01, 9.75056361e-02, -5.54103362e-02, -1.33069569e-01, 1.36178519e-01, 4.87806046e-02, 3.33680523e-02, -5.04320820e-02, -1.11918471e-01, 1.56954740e-02, -6.11651521e-02, -3.15021225e-02, 1.10610591e-01, 1.81375319e-03, 1.09281481e-01, -4.78632564e-02, 1.81503756e-01, 1.02128533e-01, -1.08703136e-01, -1.19687776e-01, 2.21152009e-01, 2.57520351e-02, 2.38293206e-01, 1.39071621e-01, ... 8.16216513e-02, -3.45893522e-02, -1.10124812e-01, 7.01522725e-02, -1.21726161e-01, -1.47423865e-01, -1.23039680e-01, -1.23374131e-02, -1.19147263e-02, 1.07446992e-01, -9.88817692e-02, -1.45182600e-01, 1.93775170e-01, -1.27346943e-01, 1.86633137e-02, 1.30837905e-01, -4.27720196e-02, -4.25461514e-02, -2.19099141e-03, 1.54280390e-01, 1.13050168e-01, -7.06144502e-02, 2.57282628e-01, -3.94247200e-02, 2.39564231e-02, -7.92104464e-02, -4.87981362e-02, -7.78851583e-03, -2.28206362e-01, -1.18388960e-02, -1.91268194e-02, 9.57533367e-02, -1.09828713e-02, -4.72533983e-02, -4.23669224e-03, -2.92308657e-01, 1.61615890e-01, 1.61840033e-01, -1.32490938e-01, -5.74908350e-02, 1.19546422e-02, -9.28351294e-02, -2.93992019e-02, 1.14365769e-01, -1.27576497e-01, 9.93977785e-02, -5.33986035e-02, 7.83101625e-02, 8.45049729e-02, -3.99923331e-03, 1.85768987e-02, -4.76808205e-02, -1.72594705e-03, -1.78767313e-01, -3.48304267e-02, 1.45269570e-01, 5.70227246e-02, 6.27400545e-02, -2.66605418e-01]])
- noise_chol_Chile_stds(chain, draw, noise_chol_Chile_stds_dim_0)float640.02867 0.4035 ... 1.622 0.3862
array([[[2.86658712e-02, 4.03513734e-01, 8.40480985e-01], [1.96448849e-01, 4.25975528e-01, 4.36350422e-01], [4.93996180e+00, 7.06556201e-01, 2.40882351e+00], ..., [3.05380895e-03, 3.52957975e+00, 2.20274432e-01], [1.79712235e-01, 1.09227714e+00, 1.62611114e+00], [3.08303752e-01, 1.62203664e+00, 3.86181427e-01]]])
- noise_chol_United Kingdom(chain, draw, noise_chol_United Kingdom_dim_0)float640.03717 0.858 ... 0.1135 0.8889
array([[[ 3.71684705e-02, 8.58028852e-01, 2.48402104e+00, -5.57011125e-04, -8.38986884e-04, 1.60835183e-03], [ 5.13831503e-01, 2.34162679e-01, 9.29773075e-01, -1.20742517e-01, 5.56586464e-01, 6.70103597e-01], [ 4.04689556e-01, -1.14194737e-01, 2.20613660e-01, -5.65167465e-02, -2.36675135e-02, 1.95619011e-01], ..., [ 1.62342154e+00, 2.91640489e-02, 9.95349212e-01, 2.90955246e-03, -3.25260129e-03, 1.13630417e-01], [ 2.92163436e-01, -1.05168710e-01, 2.21772073e-01, -1.17963943e-02, -2.78526733e-02, 5.06171702e-01], [ 2.76772440e+00, -1.28202638e-01, 3.84651102e-01, -2.57575151e-01, 1.13514286e-01, 8.88888728e-01]]])
- noise_chol_Australia(chain, draw, noise_chol_Australia_dim_0)float643.44 -0.002917 ... 0.03687 0.108
array([[[ 3.44031341e+00, -2.91742222e-03, 2.95114501e-01, 3.00258616e-02, 2.99474003e-01, 5.51796129e-01], [ 3.95364961e+00, 8.45824247e-01, 1.97179631e+00, 7.70370867e-02, -3.40942505e-01, 1.11409713e+00], [ 1.69569723e-01, 7.43677258e-03, 1.00132117e+00, 5.33000539e-02, -8.73193794e-03, 2.80895870e-01], ..., [ 5.26884235e-01, -2.75655607e-03, 2.60203450e-02, -4.26425806e-05, 1.02798877e-02, 3.36273249e-02], [ 1.49509349e+00, 1.57323061e-02, 1.18061170e-01, 7.93359128e-03, 1.79957435e-01, 2.16257204e+00], [ 1.14331405e+00, -1.66588331e-01, 6.64254119e-01, 1.37794637e-03, 3.68710103e-02, 1.08048111e-01]]])
- betaX_New Zealand(chain, draw, betaX_New Zealand_dim_0, betaX_New Zealand_dim_1)float640.0138 0.005566 ... 0.01215 0.01206
array([[[[ 0.01379526, 0.00556591, 0.01453189], [-0.01093608, -0.00610566, 0.00132908], [-0.0654455 , -0.05485527, -0.05683577], ..., [-0.04833221, -0.04626699, -0.04100381], [-0.04691773, -0.04578927, -0.0457036 ], [-0.03383016, -0.03411925, -0.03302587]], [[ 0.01074248, 0.00809032, 0.00140507], [ 0.00125393, 0.00577161, 0.00471226], [-0.06928569, -0.0540019 , -0.04032888], ..., [-0.04526051, -0.04856437, -0.04233282], [-0.05114788, -0.05350525, -0.0469331 ], [-0.0363158 , -0.04021684, -0.03642858]], [[-0.00549983, -0.00797334, -0.00876304], [-0.000499 , -0.00053982, 0.00104204], [ 0.04512627, 0.04957843, 0.05111695], ..., ... ..., [-0.05104744, -0.04843079, -0.04806802], [-0.05096372, -0.05555819, -0.04730662], [-0.03881188, -0.04276146, -0.03506456]], [[-0.00072227, -0.00092834, 0.00109428], [ 0.00307515, -0.00035414, -0.00106262], [ 0.00512026, 0.00298923, 0.00551994], ..., [ 0.00556997, 0.00053438, 0.00740147], [ 0.0040398 , 0.00120579, 0.00761817], [ 0.00299686, 0.0006392 , 0.00617203]], [[-0.00330571, -0.00312396, -0.00234554], [ 0.00028601, 0.00025555, 0.00100261], [ 0.01756795, 0.01793027, 0.01740211], ..., [ 0.01437661, 0.0152307 , 0.01547717], [ 0.01510083, 0.01617478, 0.01592912], [ 0.01122486, 0.01215329, 0.01205646]]]])
- lag_coefs_Chile(chain, draw, equations, lags, cross_vars)float64-0.1921 -0.1453 ... 0.04501 0.05681
array([[[[[-0.19213101, -0.14533614, -0.06473391], [-0.10356245, -0.36552089, -0.43861718]], [[ 0.11692234, -0.50634091, -0.25130411], [-0.10260963, 0.03150801, -0.12869279]], [[-0.00281497, -0.19004161, -0.25181706], [-0.02282547, -0.17534982, -0.06769479]]], [[[-0.13170617, -0.16964863, -0.36087602], [-0.13553971, -0.3571018 , -0.23857882]], [[-0.2724737 , -0.32146061, -0.18594359], [-0.24326934, -0.27428855, -0.16527453]], [[-0.33820013, -0.12477845, -0.25843155], [-0.1160043 , -0.2363186 , -0.11849807]]], ... [[[ 0.06922752, 0.00624961, -0.01264068], [ 0.0254135 , 0.09469037, -0.02588675]], [[-0.00340065, 0.01196188, 0.05139274], [-0.00997527, 0.03844669, -0.02156547]], [[ 0.08087667, 0.05921484, -0.0042421 ], [ 0.07486357, 0.04012774, -0.01098364]]], [[[ 0.0683015 , 0.06817381, 0.06101953], [ 0.05036844, 0.0645917 , 0.07088023]], [[ 0.09482449, 0.05084338, 0.0451617 ], [ 0.05136685, 0.07126498, 0.08353124]], [[ 0.05112117, 0.07426872, 0.05209611], [ 0.06962942, 0.0450149 , 0.05680818]]]]])
- noise_chol_Australia_corr(chain, draw, noise_chol_Australia_corr_dim_0, noise_chol_Australia_corr_dim_1)float641.0 -0.009885 ... 0.3103 1.0
array([[[[ 1. , -0.00988525, 0.04777064], [-0.00988525, 1. , 0.47596262], [ 0.04777064, 0.47596262, 1. ]], [[ 1. , 0.39422195, 0.06597661], [ 0.39422195, 1. , -0.24233587], [ 0.06597661, -0.24233587, 1. ]], [[ 1. , 0.00742676, 0.18633691], [ 0.00742676, 1. , -0.02914212], [ 0.18633691, -0.02914212, 1. ]], ..., [[ 1. , -0.10534898, -0.00121269], [-0.10534898, 1. , 0.29084598], [-0.00121269, 0.29084598, 1. ]], [[ 1. , 0.13208796, 0.00365593], [ 0.13208796, 1. , 0.08268365], [ 0.00365593, 0.08268365, 1. ]], [[ 1. , -0.24325681, 0.0120688 ], [-0.24325681, 1. , 0.31030004], [ 0.0120688 , 0.31030004, 1. ]]]])
- omega_Canada(chain, draw, omega_Canada_dim_0, omega_Canada_dim_1)float641.523 0.0 0.0 ... 0.1349 1.041
array([[[[ 1.52328406e+00, 0.00000000e+00, 0.00000000e+00], [ 1.93627565e-02, 6.19236831e-01, 0.00000000e+00], [ 3.13928098e-02, 2.84468516e-03, 1.04516595e+00]], [[ 1.03567362e+00, 0.00000000e+00, 0.00000000e+00], [-5.51794742e-01, 1.39182387e+00, 0.00000000e+00], [-7.72412381e-01, -3.89664344e-01, 1.43258294e-01]], [[ 1.30713651e-01, 0.00000000e+00, 0.00000000e+00], [-1.80048623e-01, 1.71157986e+00, 0.00000000e+00], [-5.11170658e-03, -2.07499688e-01, 8.71055067e-01]], ..., [[ 5.99543140e-01, 0.00000000e+00, 0.00000000e+00], [-1.81476036e-01, 2.28719555e+00, 0.00000000e+00], [ 3.28976088e-01, -7.25345051e-02, 1.15105894e+00]], [[ 3.35607916e+00, 0.00000000e+00, 0.00000000e+00], [-2.57181861e-01, 1.25547820e+00, 0.00000000e+00], [ 5.13457700e-02, 1.66310933e-01, 1.23280455e+00]], [[ 1.83514675e+00, 0.00000000e+00, 0.00000000e+00], [ 1.62396274e+00, 4.49527903e-01, 0.00000000e+00], [ 1.85610003e-01, 1.34895216e-01, 1.04143226e+00]]]])
- lag_coefs_Canada(chain, draw, equations, lags, cross_vars)float64-0.04739 -0.1423 ... 0.06879
array([[[[[-0.04738794, -0.14234143, -0.13853129], [-0.21672458, -0.22407083, -0.13756053]], [[-0.01232171, -0.20316328, -0.12326586], [-0.09032331, -0.26726072, -0.26274655]], [[-0.16732872, -0.17919546, -0.02832849], [-0.31048545, -0.1777181 , -0.08124112]]], [[[-0.19777672, -0.18399189, -0.23498679], [-0.18921315, -0.2419562 , -0.175745 ]], [[-0.2598466 , -0.21769632, -0.21247609], [-0.1577351 , -0.16856828, -0.21739963]], [[-0.23133308, -0.18661768, -0.19154727], [-0.27220409, -0.2292755 , -0.24996292]]], ... [[[-0.056478 , -0.06623036, -0.04319848], [ 0.0013269 , 0.04519498, 0.03744916]], [[ 0.06816514, 0.00815985, 0.02599815], [ 0.0353851 , 0.00424746, 0.06376147]], [[-0.08474669, 0.00093978, 0.02174443], [ 0.0326497 , -0.02543293, 0.01845534]]], [[[ 0.06552367, 0.04694831, 0.05054006], [ 0.06591855, 0.05434666, 0.05416537]], [[ 0.05667259, 0.06613503, 0.06163121], [ 0.05148675, 0.0603007 , 0.07082295]], [[ 0.05292572, 0.0572092 , 0.07033403], [ 0.05395109, 0.06972252, 0.06879022]]]]])
- alpha_Australia(chain, draw, equations)float64-0.1104 -0.1173 ... -0.3236 -0.2169
array([[[-0.11040217, -0.11730994, -0.11892907], [ 0.07011581, 0.01573795, 0.04269177], [ 0.14804868, 0.37001871, 0.34760741], ..., [ 0.06043768, 0.03483796, 0.07371805], [ 0.12422274, 0.07173644, 0.06389303], [-0.18801587, -0.32364038, -0.21688848]]])
- alpha_Ireland(chain, draw, equations)float64-0.1087 -0.1638 ... -0.1815 -0.2331
array([[[-0.10869618, -0.163818 , -0.08208925], [ 0.07940262, 0.06773777, 0.09363815], [ 0.15238541, 0.16961705, 0.19856246], ..., [ 0.06369923, -0.01606961, 0.43712469], [ 0.04537984, 0.06825317, 0.03096073], [-0.19148377, -0.1815312 , -0.23313313]]])
- noise_chol_Australia_stds(chain, draw, noise_chol_Australia_stds_dim_0)float643.44 0.2951 ... 0.6848 0.1142
array([[[3.44031341, 0.29512892, 0.62854212], [3.95364961, 2.14555339, 1.16764246], [0.16956972, 1.00134879, 0.28604131], ..., [0.52688423, 0.02616595, 0.03516354], [1.49509349, 0.11910477, 2.17006116], [1.14331405, 0.68482495, 0.11417427]]])
- noise_chol_South Africa_corr(chain, draw, noise_chol_South Africa_corr_dim_0, noise_chol_South Africa_corr_dim_1)float641.0 0.1287 0.1772 ... -0.275 1.0
array([[[[ 1.00000000e+00, 1.28741931e-01, 1.77185626e-01], [ 1.28741931e-01, 1.00000000e+00, -4.56917382e-02], [ 1.77185626e-01, -4.56917382e-02, 1.00000000e+00]], [[ 1.00000000e+00, 1.01205065e-01, 1.13460593e-01], [ 1.01205065e-01, 1.00000000e+00, -1.89025777e-01], [ 1.13460593e-01, -1.89025777e-01, 1.00000000e+00]], [[ 1.00000000e+00, -2.21417734e-01, -4.03579898e-02], [-2.21417734e-01, 1.00000000e+00, 8.04885336e-03], [-4.03579898e-02, 8.04885336e-03, 1.00000000e+00]], ..., [[ 1.00000000e+00, -1.19892356e-01, 3.21335276e-01], [-1.19892356e-01, 1.00000000e+00, -5.17565248e-02], [ 3.21335276e-01, -5.17565248e-02, 1.00000000e+00]], [[ 1.00000000e+00, 1.23432754e-01, 8.48505149e-04], [ 1.23432754e-01, 1.00000000e+00, 2.50079003e-01], [ 8.48505149e-04, 2.50079003e-01, 1.00000000e+00]], [[ 1.00000000e+00, 2.50513196e-01, 1.19002911e-01], [ 2.50513196e-01, 1.00000000e+00, -2.75026897e-01], [ 1.19002911e-01, -2.75026897e-01, 1.00000000e+00]]]])
- noise_chol_Ireland(chain, draw, noise_chol_Ireland_dim_0)float643.052 0.654 ... 0.07744 0.5409
array([[[ 3.05179578e+00, 6.54018601e-01, 2.16628875e+00, -5.36283083e-02, 4.41811696e-03, 1.73968325e-01], [ 6.47545198e-01, -1.91753318e-02, 7.77718888e-01, -1.56506280e-02, -2.60786049e-02, 1.43761624e-01], [ 7.07637200e-01, -2.23806635e-02, 2.20859235e+00, -1.46181329e-01, 6.40742541e-02, 4.46789597e-01], ..., [ 1.20541287e+00, -9.71924165e-02, 1.17056953e+00, 4.81963023e-01, -4.65291663e-01, 2.62150833e+00], [ 1.56463364e+00, 7.99916182e-02, 6.06490213e-01, -1.01729349e-03, 1.99537798e-01, 1.01884394e+00], [ 1.21394237e+00, 8.46768355e-02, 4.19133586e-01, 9.16616344e-02, 7.74371047e-02, 5.40857144e-01]]])
- noise_chol_Ireland_corr(chain, draw, noise_chol_Ireland_corr_dim_0, noise_chol_Ireland_corr_dim_1)float641.0 0.289 -0.2945 ... 0.1698 1.0
array([[[[ 1.00000000e+00, 2.89022671e-01, -2.94498852e-01], [ 2.89022671e-01, 1.00000000e+00, -6.18902857e-02], [-2.94498852e-01, -6.18902857e-02, 1.00000000e+00]], [[ 1.00000000e+00, -2.46483740e-02, -1.06507675e-01], [-2.46483740e-02, 1.00000000e+00, -1.74794330e-01], [-1.06507675e-01, -1.74794330e-01, 1.00000000e+00]], [[ 1.00000000e+00, -1.01329313e-02, -3.08111964e-01], [-1.01329313e-02, 1.00000000e+00, 1.38166893e-01], [-3.08111964e-01, 1.38166893e-01, 1.00000000e+00]], ..., [[ 1.00000000e+00, -8.27452920e-02, 1.78125390e-01], [-8.27452920e-02, 1.00000000e+00, -1.86113264e-01], [ 1.78125390e-01, -1.86113264e-01, 1.00000000e+00]], [[ 1.00000000e+00, 1.30760250e-01, -9.79862682e-04], [ 1.30760250e-01, 1.00000000e+00, 1.90417587e-01], [-9.79862682e-04, 1.90417587e-01, 1.00000000e+00]], [[ 1.00000000e+00, 1.98027405e-01, 1.65451839e-01], [ 1.98027405e-01, 1.00000000e+00, 1.69772100e-01], [ 1.65451839e-01, 1.69772100e-01, 1.00000000e+00]]]])
- betaX_Chile(chain, draw, betaX_Chile_dim_0, betaX_Chile_dim_1)float64-0.03785 0.01646 ... -0.01037
array([[[[-0.03785033, 0.01645857, 0.02087206], [ 0.09531856, 0.07028343, 0.02932705], [ 0.05980812, 0.04857091, 0.00052036], ..., [-0.01685545, -0.02523695, -0.02725142], [-0.05015806, -0.02501123, -0.02422215], [ 0.00575774, 0.04877649, 0.03458518]], [[ 0.01966734, -0.03028052, 0.01579705], [ 0.06804103, 0.06359205, 0.05134099], [ 0.00193208, 0.0490178 , -0.00721928], ..., [-0.04087721, -0.04169082, -0.04024195], [-0.05170266, -0.04250768, -0.03567257], [ 0.04181574, 0.04772947, 0.04759498]], [[ 0.00658565, 0.00798913, 0.03706616], [-0.04220304, -0.06184718, -0.05100309], [-0.01072383, -0.02186942, -0.0499245 ], ..., ... ..., [-0.04834585, -0.01974106, -0.00777098], [-0.0127852 , -0.03802169, -0.03700922], [ 0.0598804 , 0.02581887, 0.00509231]], [[ 0.01709368, -0.00630599, 0.01629886], [ 0.00920585, 0.00400731, -0.00266765], [-0.00658293, 0.0067501 , -0.01343034], ..., [ 0.00685193, 0.0055429 , 0.00788099], [ 0.00275637, 0.00202491, 0.00451132], [-0.00382311, -0.00651726, -0.00863301]], [[ 0.00131005, 0.00396284, 0.00358667], [-0.02293317, -0.02470869, -0.02028217], [-0.00889773, -0.00958227, -0.01082166], ..., [ 0.00961991, 0.0088714 , 0.00861739], [ 0.01251388, 0.0129503 , 0.0111852 ], [-0.01122307, -0.00938066, -0.01037044]]]])
- omega_global_stds(chain, draw, omega_global_stds_dim_0)float642.027 0.3923 0.208 ... 3.015 1.214
array([[[2.02687573, 0.3922567 , 0.20800552], [1.42338109, 1.39537257, 1.25244312], [0.17172083, 0.39997914, 0.46632279], ..., [0.49741775, 0.22137572, 0.42187734], [4.03165864, 2.1646064 , 0.14628529], [2.50023366, 3.0151032 , 1.21365994]]])
- alpha_Chile(chain, draw, equations)float64-0.1192 -0.1203 ... -0.2583 -0.2283
array([[[-0.11924555, -0.12032095, -0.10467121], [ 0.09605114, 0.04042802, 0.0695121 ], [ 0.19930289, 0.20740156, 0.2040223 ], ..., [ 0.16471413, 0.20172513, 0.06137248], [ 0.01225394, 0.08455854, 0.02188007], [-0.26668872, -0.25826539, -0.22825017]]])
- betaX_South Africa(chain, draw, betaX_South Africa_dim_0, betaX_South Africa_dim_1)float64-0.05584 -0.04898 ... -0.01442
array([[[[-0.0558436 , -0.04898187, -0.05355381], [-0.05030295, -0.04268354, -0.05209047], [-0.06362075, -0.05213718, -0.06295628], ..., [-0.00370569, -0.00070618, -0.00429591], [-0.00026378, 0.00221167, -0.00043544], [ 0.05821865, 0.05091112, 0.05731178]], [[-0.07427694, -0.06170692, -0.06658133], [-0.0638319 , -0.05446519, -0.05642085], [-0.0823938 , -0.07004981, -0.07096411], ..., [-0.00576356, -0.00474655, -0.00073715], [-0.00335177, -0.00192779, 0.00204938], [ 0.06017439, 0.05778677, 0.06944154]], [[ 0.04658698, 0.04616185, 0.04584471], [ 0.04232194, 0.04217134, 0.04243651], [ 0.05361996, 0.05414532, 0.05408819], ..., ... ..., [ 0.01480562, -0.00324349, 0.00864162], [ 0.02060229, -0.01014975, 0.00712865], [ 0.11584537, 0.01655988, 0.05265053]], [[ 0.01950713, -0.0092738 , -0.00900151], [ 0.0130672 , -0.00754261, 0.00406379], [ 0.01326231, -0.00838295, -0.00127099], ..., [-0.00235201, 0.00123899, 0.0012021 ], [-0.00255293, 0.00180714, -0.00168518], [-0.01246222, 0.01020893, -0.02097644]], [[ 0.01618206, 0.01837856, 0.01680204], [ 0.01429436, 0.01593231, 0.01433676], [ 0.01775231, 0.01968737, 0.01814331], ..., [ 0.0008452 , 0.00034234, 0.00098735], [ 0.00027306, -0.00034906, 0.00054784], [-0.0154514 , -0.01924211, -0.01441864]]]])
- noise_chol_Canada_stds(chain, draw, noise_chol_Canada_stds_dim_0)float641.104 0.825 1.756 ... 0.5721 1.105
array([[[1.10440523, 0.82503859, 1.75570064], [0.15839307, 1.82599118, 0.10349833], [0.1085844 , 2.45752976, 1.17689712], ..., [0.67556354, 3.84087625, 1.84996594], [3.21172324, 1.19995824, 1.50126291], [0.94243576, 0.5721334 , 1.10479856]]])
- z_scale_beta_South Africa(chain, draw)float640.1073 0.1805 ... 0.2544 0.2265
array([[0.10725401, 0.18053172, 0.15312198, 0.13222558, 0.24763501, 0.13829208, 0.13942574, 0.22536165, 0.0804554 , 0.16919095, 0.09650668, 0.43661526, 0.11085958, 0.19899226, 0.08281941, 0.07041651, 0.13845667, 0.23730792, 0.1101118 , 0.13838181, 0.38630228, 0.1075834 , 0.17936368, 0.10454221, 0.09760238, 0.19306042, 0.14542157, 0.15596088, 0.20652342, 0.51818893, 0.09761156, 0.30728218, 0.0837425 , 0.35364186, 0.10977368, 0.18523932, 0.32144508, 0.36644665, 0.33300565, 0.24270826, 0.10655736, 0.21650779, 1.10851693, 0.19038574, 0.09248167, 0.42827783, 0.25155635, 0.13940242, 0.21130247, 0.17644408, 0.08264195, 0.28730601, 0.12524715, 0.54499077, 0.35556992, 0.78320452, 0.36482641, 0.14980467, 0.19185827, 0.10402998, 0.10465709, 0.13258314, 0.51721945, 0.12322392, 0.12148108, 0.14556979, 0.10882881, 0.20944164, 0.07319728, 0.10113682, 0.48365335, 0.28372294, 0.20965392, 0.14507687, 0.33385838, 0.09031964, 0.35193183, 0.0726045 , 0.21016792, 0.13165753, 0.62025143, 0.14487309, 0.18718442, 0.16994823, 0.10752624, 0.20953533, 0.29508935, 0.15935652, 0.08113116, 0.36304941, 0.17457381, 0.09257469, 0.20229817, 0.27807935, 0.25228236, 0.47765986, 0.04043506, 0.17068503, 0.23606871, 0.21949982, ... 0.25812428, 0.25584492, 0.12000788, 0.18615161, 0.30618276, 0.55531509, 0.3798937 , 0.58517722, 1.33472023, 0.08258648, 0.17049598, 0.13462352, 0.13251328, 0.3574387 , 0.16609369, 0.17063956, 0.22181368, 0.31298038, 0.10275053, 0.05074391, 0.14210875, 0.10690855, 0.23991028, 0.10684294, 0.34441436, 0.29376056, 0.13149677, 0.18759748, 0.10411764, 0.36140611, 0.08693992, 0.19647584, 0.20251634, 0.18216841, 0.15343795, 0.09189746, 0.14098726, 0.40627829, 0.14786393, 0.38931897, 0.17453446, 0.14334555, 0.10576873, 0.15494502, 0.1223162 , 0.44686162, 0.19276915, 0.22505745, 0.44672386, 0.06326841, 0.15580757, 0.26850481, 0.1358556 , 0.13065448, 0.35651341, 0.45386905, 0.1353396 , 0.23605247, 0.49807726, 0.1012356 , 0.22667477, 0.29198482, 0.3749364 , 1.06615042, 0.12785009, 0.11832592, 0.12795421, 0.67197296, 0.1005462 , 0.23591892, 0.1126967 , 1.15764445, 0.12701876, 0.27796705, 0.07589608, 0.23126463, 0.10319304, 0.10209158, 0.13637707, 0.18236102, 0.10418193, 0.2118901 , 0.16719501, 0.12298671, 0.29827216, 0.27316018, 0.11454635, 0.43375971, 0.14775724, 0.16408741, 0.23225362, 0.18957495, 0.15405318, 0.25925591, 0.10530855, 0.08787894, 0.11283592, 0.27737801, 0.25435022, 0.22653212]])
- alpha_hat_scale(chain, draw)float640.0727 0.1192 ... 0.2113 0.1635
array([[0.07269615, 0.11921829, 0.23143252, 0.84861949, 0.16966103, 0.5075582 , 0.67664624, 0.20809928, 0.30311923, 0.64344922, 1.01196531, 0.07163681, 0.14849358, 0.70496493, 0.71984082, 0.09816693, 0.30453596, 0.16022729, 0.34023738, 0.18437594, 0.08933639, 0.12849086, 0.10990283, 0.10864449, 0.39733202, 0.22996314, 0.74297684, 0.09706945, 0.13139282, 0.11102822, 0.14630976, 0.15336906, 0.56344578, 0.41766301, 0.52541364, 0.26019061, 0.33760547, 0.19281295, 0.35854335, 0.07862992, 0.1358479 , 0.43859383, 0.20273686, 0.13698435, 0.55731002, 0.20756932, 0.3602051 , 0.06894599, 0.16491305, 0.24257593, 0.09313312, 0.32056066, 0.19396391, 0.10980309, 0.24942448, 0.10673777, 0.1348833 , 0.22183752, 0.19270976, 0.13682576, 0.06966482, 0.24358429, 0.16095191, 0.27298288, 0.19911166, 0.20125226, 0.16671434, 0.09073042, 0.2481739 , 0.10550495, 0.04841081, 4.4755525 , 0.10680349, 0.37361509, 0.08602964, 0.06953387, 0.13064071, 0.32415379, 0.39946363, 0.15933561, 0.31391744, 0.11403867, 0.11453116, 0.31961843, 0.22937366, 0.38438506, 0.12169275, 0.16522245, 0.45366146, 0.4183631 , 0.28288921, 0.11183029, 0.0706044 , 0.09158592, 0.35316383, 0.21230669, 0.18942057, 0.10234242, 0.23640088, 0.34122672, ... 0.11510218, 0.28715445, 0.06325536, 0.2182641 , 0.05826435, 0.23779747, 0.12024905, 0.20812626, 0.08283591, 0.12346339, 0.12013893, 0.14929195, 0.20226776, 0.07193751, 0.21939499, 0.10643118, 0.16011808, 0.2110086 , 0.14463812, 0.14317078, 0.64361059, 0.1397251 , 0.46588068, 0.12380565, 0.11512193, 0.0764919 , 0.16231359, 0.07582565, 0.12714337, 0.13839952, 0.19057452, 0.19415788, 0.05211183, 0.19719842, 0.24943753, 0.19734745, 0.29850262, 0.34822184, 0.51842222, 0.07572321, 0.16820925, 0.20390044, 0.28380267, 0.07146765, 0.06384731, 0.28055985, 0.09380778, 0.4739377 , 0.3139601 , 0.12539639, 0.1713179 , 0.15938139, 0.14701943, 0.1486747 , 0.33452924, 0.31705784, 0.42520577, 0.19829761, 0.16739522, 0.17925151, 0.25676685, 0.33851669, 1.13426024, 0.2406065 , 0.15675693, 0.11306248, 0.24601556, 0.14152391, 0.16138818, 0.1007528 , 0.21083613, 0.21538297, 0.23693717, 0.34581154, 0.46284469, 0.20132751, 0.62907934, 0.67779712, 0.89761045, 0.30522743, 0.35975874, 0.27838732, 0.29728314, 0.10639236, 0.09146294, 0.36255709, 0.32174608, 0.07658706, 0.17405355, 0.09338064, 0.62281929, 0.2122815 , 0.23269755, 0.15123917, 0.37040656, 0.21158872, 0.31484035, 0.28298487, 0.21128568, 0.16345312]])
- z_scale_alpha_Chile(chain, draw)float640.1228 0.1802 ... 0.1581 0.1447
array([[0.12280496, 0.1801886 , 0.06214498, 0.9396314 , 0.29532813, 0.14485331, 0.25391981, 0.09722508, 0.84281462, 0.1754833 , 0.14833856, 0.16231669, 0.25938678, 0.80888171, 1.90351011, 0.36425559, 0.18082723, 0.14113397, 0.76681855, 0.28962159, 0.33811589, 0.20426871, 0.15037805, 0.11512526, 0.3217111 , 0.42380128, 0.13099404, 0.66522252, 0.10802987, 0.12609351, 0.08573739, 0.25037987, 0.15922931, 0.30542747, 0.19328752, 0.1186681 , 0.16841963, 0.14580037, 0.57867261, 1.36610174, 0.09644918, 0.07780445, 0.17635274, 0.06792031, 0.60318196, 0.26870654, 0.20632756, 0.22098476, 0.30685076, 0.1174546 , 0.10842272, 0.63121043, 0.13528979, 0.12295001, 0.21622103, 0.32004973, 0.20743825, 0.12341796, 0.16046552, 0.12204894, 0.15700979, 0.47426836, 0.59871361, 0.130174 , 0.17841922, 0.05130847, 0.24402754, 0.26311468, 0.3673745 , 0.21245848, 0.15455659, 0.16135878, 0.22060327, 0.08259884, 0.20288021, 0.19934387, 0.4310693 , 0.15725011, 0.11558767, 0.18058161, 0.40076971, 1.59883351, 0.13512574, 0.07111749, 0.2259875 , 0.11708975, 0.17962592, 0.20554337, 0.10674949, 0.38846715, 0.24648182, 0.26746079, 0.21472927, 0.58726211, 0.2480894 , 0.22786661, 0.07168677, 0.15040255, 0.31669026, 0.81533274, ... 0.10732727, 0.25540907, 0.18845381, 0.18159762, 0.84641552, 0.95657691, 0.29089986, 0.10297957, 2.18222589, 0.18367526, 0.13414844, 0.27980592, 0.16258218, 0.22178631, 0.24193235, 0.33693783, 0.15629178, 0.13617769, 0.15148151, 0.17607153, 0.13714411, 0.11630865, 0.50907849, 0.18781747, 0.25961083, 0.17828212, 0.30363962, 0.24837124, 0.28097205, 0.1212715 , 0.15934898, 0.17463097, 0.36715658, 0.1965841 , 0.15911579, 0.18945764, 0.53008639, 1.60310381, 0.29878552, 0.31898287, 0.2580223 , 0.16231215, 0.25781832, 0.12833553, 0.22224723, 0.11660717, 0.11259463, 0.70996616, 0.26725195, 0.27916963, 0.0648474 , 0.13238682, 0.14569057, 0.08504128, 0.34093376, 0.0886281 , 0.41900118, 0.14394318, 0.06623067, 0.07323047, 0.1616256 , 0.1730078 , 0.29926958, 0.41316745, 0.48462346, 0.06349766, 1.03391098, 0.09250841, 0.35071748, 0.11720248, 0.22021422, 0.25051871, 0.07971699, 0.11641528, 0.15521057, 0.44110744, 0.19682487, 0.18227832, 0.16280956, 0.16616888, 0.25973939, 0.12016903, 0.20314555, 0.14937808, 0.44411365, 0.35396291, 0.30764843, 0.41954436, 0.29483912, 0.20793049, 0.5363871 , 0.08154625, 0.31168436, 0.15164051, 0.20415209, 0.14594542, 0.26251029, 0.31846204, 0.15811698, 0.1447256 ]])
- z_scale_alpha_United Kingdom(chain, draw)float640.1462 0.2181 ... 0.1132 0.1805
array([[0.14615347, 0.21814529, 0.08921965, 0.15732618, 0.10877408, 0.26838932, 0.23372908, 0.10478102, 0.30007749, 0.20797412, 0.24297004, 0.14059216, 0.50656317, 0.04252637, 0.42111484, 0.16856053, 0.1426295 , 0.13709904, 0.44633171, 0.92469999, 0.27874396, 0.96112713, 0.55251534, 0.15682131, 0.58532478, 0.0775758 , 0.31647196, 0.10230881, 0.09274098, 0.17951364, 0.10385349, 0.34649954, 0.1111455 , 0.15686222, 0.10405297, 0.14926344, 0.1219439 , 0.1299249 , 0.70901532, 0.1017012 , 0.09479976, 0.30732467, 0.22215443, 0.25663154, 0.09132576, 0.11221097, 0.20059669, 0.08295577, 0.619365 , 0.17270199, 0.11771648, 0.1574121 , 0.1192092 , 0.19272859, 0.59577432, 0.25757943, 0.30501459, 0.10930594, 0.32325162, 0.08842916, 0.4478156 , 0.17351546, 0.47777777, 0.18264043, 0.18286935, 0.14669802, 0.18226189, 0.18756594, 0.8562476 , 0.12543233, 0.17217142, 0.06201229, 0.18986327, 0.15523575, 0.26112021, 0.85582229, 0.29504765, 0.08046924, 0.14008726, 0.14362572, 0.11293334, 0.14019856, 0.20855488, 0.33438951, 0.33480502, 0.20368539, 0.19183289, 0.07625658, 0.3757983 , 0.13890529, 0.3200278 , 0.13286024, 0.08474757, 0.06918901, 0.82314137, 0.13584292, 0.19353441, 0.44884621, 0.20077177, 0.31292323, ... 0.27453994, 0.2341724 , 0.05568105, 0.18127981, 0.17273249, 0.73311412, 1.24177591, 0.11517602, 0.20825295, 0.22007299, 0.1253171 , 0.49008584, 0.08482854, 0.37319298, 0.3061145 , 0.18899357, 0.20976727, 0.2296741 , 0.09501514, 0.24112746, 0.09570809, 0.18475431, 0.16895616, 0.15710433, 0.52212712, 0.47383848, 0.13838211, 0.21483669, 0.07641952, 0.28699865, 0.26494069, 0.07559187, 0.09959629, 0.23535023, 0.23532044, 0.09781274, 0.30847832, 0.06363466, 0.18676587, 0.16781683, 0.18327309, 0.06711008, 0.48003086, 0.09125349, 0.23476454, 0.10241234, 0.78334824, 0.06992242, 0.27470254, 0.13828056, 0.17578395, 0.15507622, 0.1191825 , 0.11911828, 0.17926634, 0.24485954, 0.11456693, 0.43582202, 0.14602728, 0.46181792, 0.14520694, 0.42904162, 0.06024894, 0.24232622, 0.13150011, 0.09110117, 0.12624898, 0.21179786, 0.5072583 , 0.30542341, 0.15424995, 0.26049769, 0.35399283, 0.14698489, 0.25859346, 0.15470331, 0.20398941, 0.13981706, 0.32678196, 0.12441435, 0.46566708, 0.0994699 , 0.36349282, 0.19693197, 0.05707575, 0.1943626 , 0.24143071, 0.29668235, 0.22333971, 0.13946168, 0.20708734, 0.19571303, 0.2096319 , 0.08398149, 0.09573948, 0.1769644 , 0.46251936, 0.19525321, 0.1131867 , 0.18048441]])
- noise_chol_New Zealand_corr(chain, draw, noise_chol_New Zealand_corr_dim_0, noise_chol_New Zealand_corr_dim_1)float641.0 0.3852 0.2603 ... -0.1005 1.0
array([[[[ 1. , 0.38524886, 0.26031599], [ 0.38524886, 1. , -0.16907472], [ 0.26031599, -0.16907472, 1. ]], [[ 1. , 0.14718378, -0.71368448], [ 0.14718378, 1. , -0.03434326], [-0.71368448, -0.03434326, 1. ]], [[ 1. , 0.03681494, 0.04966948], [ 0.03681494, 1. , -0.30363802], [ 0.04966948, -0.30363802, 1. ]], ..., [[ 1. , -0.21527001, -0.38740003], [-0.21527001, 1. , 0.14113665], [-0.38740003, 0.14113665, 1. ]], [[ 1. , 0.08716486, 0.27606965], [ 0.08716486, 1. , -0.15615154], [ 0.27606965, -0.15615154, 1. ]], [[ 1. , -0.07402657, 0.02915884], [-0.07402657, 1. , -0.10050008], [ 0.02915884, -0.10050008, 1. ]]]])
- noise_chol_United States_corr(chain, draw, noise_chol_United States_corr_dim_0, noise_chol_United States_corr_dim_1)float641.0 0.01808 -0.07775 ... 0.2051 1.0
array([[[[ 1. , 0.01807806, -0.07774922], [ 0.01807806, 1. , 0.40628986], [-0.07774922, 0.40628986, 1. ]], [[ 1. , -0.04725293, 0.14554113], [-0.04725293, 1. , 0.28012288], [ 0.14554113, 0.28012288, 1. ]], [[ 1. , -0.18640816, 0.03443714], [-0.18640816, 1. , 0.46879452], [ 0.03443714, 0.46879452, 1. ]], ..., [[ 1. , -0.01840045, -0.38639318], [-0.01840045, 1. , 0.03570362], [-0.38639318, 0.03570362, 1. ]], [[ 1. , -0.05084678, -0.05729962], [-0.05084678, 1. , 0.04874449], [-0.05729962, 0.04874449, 1. ]], [[ 1. , 0.35721589, -0.27867325], [ 0.35721589, 1. , 0.20505815], [-0.27867325, 0.20505815, 1. ]]]])
- noise_chol_Chile(chain, draw, noise_chol_Chile_dim_0)float640.02867 -0.06896 ... -0.1446 0.3575
array([[[ 2.86658712e-02, -6.89626277e-02, 3.97577024e-01, 1.24975708e-01, 2.03544014e-01, 8.05828265e-01], [ 1.96448849e-01, -1.67392731e-01, 3.91707574e-01, 1.05598630e-01, 1.11264155e-02, 4.23233769e-01], [ 4.93996180e+00, -2.28576964e-02, 7.06186371e-01, 8.99573106e-01, 1.07460087e-01, 2.23196130e+00], ..., [ 3.05380895e-03, -8.90622680e-01, 3.41536594e+00, -7.56755854e-02, -1.92021092e-03, 2.06858270e-01], [ 1.79712235e-01, 3.31228560e-01, 1.04084437e+00, 3.82925750e-01, 3.85452013e-01, 1.53265523e+00], [ 3.08303752e-01, -4.39043564e-01, 1.56148763e+00, 2.08548661e-02, -1.44607107e-01, 3.57477207e-01]]])
- z_scale_alpha_United States(chain, draw)float640.2131 0.2173 ... 0.9523 0.2111
array([[0.213131 , 0.21725718, 0.22404577, 0.25395186, 1.25995739, 0.05129905, 0.28177037, 0.49832128, 0.55824947, 0.27270416, 0.54184521, 0.23547635, 0.1661448 , 0.1095501 , 0.09859127, 0.38130638, 0.13448592, 0.19701676, 0.28648084, 0.17895608, 0.12634376, 0.43515596, 0.13119484, 0.93350449, 0.20318491, 0.27020998, 0.12537416, 0.06455312, 0.25969604, 0.19505406, 0.13752629, 0.11508442, 0.69842961, 0.63597102, 0.08573165, 0.15040056, 0.07971116, 0.27761443, 0.29080742, 0.10751002, 0.16730017, 0.22935299, 0.18744526, 0.16046437, 0.09227502, 0.08299103, 0.14732107, 0.18676536, 1.44512843, 0.09468049, 0.36356497, 0.47477523, 0.10161336, 0.2142195 , 0.2393077 , 0.21300733, 0.06310802, 0.17393768, 0.12666332, 0.11760015, 0.26429748, 0.33236386, 0.39800096, 0.08165497, 0.1144731 , 0.08405083, 0.12684565, 0.16087119, 0.1557723 , 0.27829468, 0.10828135, 0.30089728, 0.1192222 , 0.08841513, 0.17681336, 0.2129509 , 0.08544167, 0.09566903, 0.4035193 , 0.65962495, 0.24762694, 0.17419881, 0.39933495, 0.48364864, 0.24012817, 0.20604128, 0.3841842 , 0.15346105, 0.1078102 , 0.23174745, 0.74321902, 0.16599125, 0.49158993, 0.10894033, 0.29102026, 0.15326786, 0.10167379, 0.14005689, 0.23751325, 0.78210725, ... 0.14312609, 0.14504121, 0.12848571, 0.09837204, 0.15276736, 0.63350922, 0.07001615, 0.16307457, 0.23126341, 0.19017895, 0.18095649, 0.31685085, 0.36320904, 0.20086189, 0.09804208, 0.11229264, 0.15529835, 0.10684901, 0.16513884, 1.00334368, 0.90216595, 0.25810317, 1.45173001, 0.83503671, 0.10299706, 0.20407598, 0.04759074, 0.10313566, 0.3615443 , 0.40750234, 0.12881712, 0.29223599, 0.39753163, 0.6605557 , 0.50994988, 0.14554548, 0.13850693, 0.67496332, 0.23446763, 0.1438275 , 0.10050025, 0.22235178, 0.35316296, 0.11539015, 0.08959966, 0.19899996, 0.07770607, 0.12859195, 0.11907838, 0.19230079, 0.15656008, 0.12932708, 0.29257899, 0.21465011, 0.39832942, 0.04844192, 0.07065745, 0.15464813, 0.16818291, 0.13314731, 0.06698879, 0.37597655, 0.15014681, 0.10834985, 0.32433376, 0.12216928, 0.50987548, 1.23717434, 0.09642178, 0.37018357, 0.18213376, 0.05193194, 0.1497674 , 0.22702825, 0.24786638, 0.05947143, 0.17178903, 0.29558854, 0.25410012, 0.30833692, 0.15885424, 0.11080126, 0.24733362, 0.2618624 , 0.10312871, 0.20318639, 0.12534367, 0.2954155 , 0.1974756 , 0.13267557, 0.26437944, 0.26765847, 0.09003416, 0.28084225, 0.6000107 , 0.15638529, 0.1348397 , 0.114784 , 0.95225872, 0.2111357 ]])
- noise_chol_Ireland_stds(chain, draw, noise_chol_Ireland_stds_dim_0)float643.052 2.263 0.1821 ... 0.4276 0.554
array([[[3.05179578, 2.26286263, 0.18210023], [0.6475452 , 0.77795524, 0.14694366], [0.7076372 , 2.20870574, 0.47444224], ..., [1.20541287, 1.17459754, 2.70575139], [1.56463364, 0.61174262, 1.03820005], [1.21394237, 0.4276016 , 0.55400795]]])
- beta_hat_location(chain, draw)float64-0.1648 -0.2081 ... 0.0113 0.05914
array([[-0.16481175, -0.20809496, 0.16284455, -0.06670417, 0.20153212, 0.00238363, 0.06199665, -0.03543655, -0.03926312, 0.13693163, 0.13141081, 0.10801654, 0.11110207, -0.10641381, -0.04353907, 0.1056492 , 0.06787589, -0.10119827, -0.04913159, 0.0462559 , -0.23254297, 0.07203862, -0.1765229 , 0.09002237, -0.08303859, 0.05352949, 0.11311501, 0.11669136, 0.07052244, -0.0111081 , -0.20942819, 0.13809954, -0.01091662, 0.01813257, 0.02249916, 0.17290654, 0.00451771, -0.04546065, 0.1887338 , 0.15981393, -0.12068138, 0.12706804, -0.10485724, 0.05808422, 0.1083918 , 0.11740385, -0.23974765, 0.01047011, -0.07072351, 0.02013301, -0.03522476, -0.09390172, -0.08729993, -0.02633896, -0.17301583, -0.16426084, 0.05181323, 0.02842454, -0.00801742, -0.09094017, 0.05193375, -0.12707409, 0.01230593, -0.00335992, -0.07555674, -0.10280913, -0.16115713, 0.18664087, 0.31247593, 0.1037974 , -0.02645771, 0.07510285, 0.01774999, -0.03879357, -0.18341457, -0.01466648, 0.03587112, -0.07496613, 0.292636 , -0.28021826, 0.13067678, 0.02094223, -0.11146711, -0.08585967, -0.12881305, 0.02642538, 0.15162453, -0.12306617, -0.02078033, -0.05134788, -0.02570612, 0.09287529, 0.14307387, 0.07750462, -0.08578185, -0.00848868, 0.02153072, 0.09048901, -0.09708856, 0.16906214, ... 0.15142473, -0.32155753, 0.03281664, -0.12321917, -0.05759783, 0.19264854, 0.0715562 , -0.02225798, 0.00513071, 0.01819049, 0.08043267, -0.10933417, 0.01239515, 0.00716248, -0.02060367, -0.14038532, 0.17588652, 0.04889748, -0.04151308, -0.0464201 , -0.09352181, 0.06807259, 0.00763478, -0.08002759, -0.04640006, -0.11200583, 0.09651522, 0.17205287, 0.07632241, 0.05538552, -0.04992605, -0.03717167, -0.10774248, 0.07257829, -0.16353298, 0.02617405, 0.10574109, 0.07088435, -0.16879805, -0.08567799, 0.03575711, 0.20419767, -0.02997488, -0.09988271, -0.06459231, -0.22554068, 0.04772152, -0.19766586, 0.080018 , -0.09377091, -0.05714076, -0.01117028, -0.12294586, -0.1362682 , -0.06380633, 0.04973399, -0.12680432, 0.04301216, -0.03454063, 0.19510736, -0.25272959, -0.00048978, -0.0808569 , -0.16610265, -0.01780281, -0.10247105, 0.05562454, 0.01445049, -0.20653719, 0.14408886, -0.03978285, 0.02297927, -0.18641727, -0.01959715, -0.15556193, -0.0172424 , -0.00495404, 0.05588277, 0.17457213, -0.01759205, -0.053386 , 0.1278743 , -0.00732395, 0.09852238, -0.00235284, 0.00120081, 0.116359 , 0.00593622, -0.11993341, -0.06500739, 0.15256744, 0.01469552, -0.08728158, 0.12287521, -0.10911156, 0.01910623, -0.16061979, -0.18130079, 0.01129778, 0.05913939]])
- rho(chain, draw)float640.4541 0.6935 ... 0.1761 0.5731
array([[0.45408371, 0.69350899, 0.35049896, 0.23006247, 0.76242918, 0.70501677, 0.05367603, 0.67104457, 0.27539228, 0.7166245 , 0.45334409, 0.84363359, 0.35948475, 0.03437022, 0.19584551, 0.42114371, 0.4940945 , 0.67276139, 0.84154138, 0.2502528 , 0.79031196, 0.48646038, 0.76934743, 0.91227126, 0.67111831, 0.2401683 , 0.52495365, 0.51705828, 0.14105183, 0.73161832, 0.8221039 , 0.20932337, 0.28994766, 0.24748005, 0.53707395, 0.33366829, 0.69892448, 0.50569658, 0.83425951, 0.34720364, 0.57428598, 0.17666474, 0.8467154 , 0.87396205, 0.29832267, 0.3786298 , 0.50826547, 0.37942305, 0.62288707, 0.50273959, 0.49671072, 0.32090275, 0.51230094, 0.43734976, 0.51710441, 0.62698532, 0.55284996, 0.54306173, 0.46399675, 0.73824307, 0.35566467, 0.1523995 , 0.26756316, 0.70418041, 0.52058539, 0.39748723, 0.93960598, 0.58849021, 0.87406193, 0.88156013, 0.62846781, 0.29445907, 0.06498372, 0.67313392, 0.79593263, 0.96395349, 0.17048755, 0.35716337, 0.51502277, 0.43679723, 0.12226093, 0.46175202, 0.3580057 , 0.19219847, 0.57047203, 0.52972452, 0.07763128, 0.29154291, 0.23669705, 0.19362827, 0.66743246, 0.42616666, 0.2766233 , 0.60863324, 0.26673162, 0.85178987, 0.75493282, 0.52312087, 0.15625225, 0.86869569, ... 0.5916496 , 0.95019525, 0.66363723, 0.60389902, 0.42312456, 0.65388926, 0.41973304, 0.78954301, 0.67610768, 0.49357635, 0.94811528, 0.1627281 , 0.81540546, 0.71591941, 0.15847906, 0.42608947, 0.59020144, 0.60466001, 0.16386533, 0.6563939 , 0.72368189, 0.71268739, 0.08435803, 0.16813328, 0.71776272, 0.47468738, 0.33987693, 0.51241451, 0.53359411, 0.7615783 , 0.22030355, 0.69281104, 0.41457362, 0.31889544, 0.59163158, 0.41498785, 0.50451057, 0.47400243, 0.69923042, 0.27328454, 0.73617488, 0.59073884, 0.67845796, 0.236538 , 0.19893683, 0.19526877, 0.86770475, 0.70382729, 0.58445592, 0.6208028 , 0.7915242 , 0.82593155, 0.4962333 , 0.70547759, 0.80282085, 0.11878151, 0.19505328, 0.64237388, 0.68187787, 0.61570776, 0.93888417, 0.22076176, 0.43904963, 0.47437682, 0.47768572, 0.73397547, 0.64809938, 0.28300901, 0.41784012, 0.39098325, 0.49852955, 0.66886414, 0.71536127, 0.18841023, 0.2009872 , 0.50540092, 0.43635371, 0.32098071, 0.26902961, 0.38409436, 0.1486014 , 0.75615635, 0.51535178, 0.43578111, 0.32947848, 0.19946403, 0.1354591 , 0.74983673, 0.91626011, 0.24296797, 0.14304216, 0.21893295, 0.47244829, 0.20654953, 0.55832374, 0.64679508, 0.33490577, 0.42673137, 0.17605767, 0.57305957]])
- z_scale_alpha_Canada(chain, draw)float640.06378 0.2621 ... 0.06267 0.2395
array([[0.06378199, 0.26213638, 0.10562488, 0.41412078, 0.22852257, 0.97315592, 0.1018424 , 0.28849668, 0.31188091, 0.16670602, 0.19405259, 0.15868021, 0.14469301, 0.34340057, 0.23637804, 0.11256724, 0.63783365, 0.0999994 , 0.1261458 , 0.34533882, 0.06299829, 0.10649731, 0.31179513, 0.13521697, 0.15208259, 0.16434184, 0.13069923, 0.15646203, 0.25548276, 0.17661368, 0.23370614, 0.25636507, 0.13942621, 0.39854945, 0.13636833, 0.10310414, 0.39128064, 0.12635791, 0.22949415, 0.23036678, 0.12051084, 0.10650911, 0.12005857, 0.46443176, 3.7093797 , 0.12245853, 0.10306819, 1.55604689, 0.06856524, 0.08798214, 0.13534854, 0.14941395, 0.15001066, 0.1209059 , 0.10413524, 0.1032491 , 0.20396899, 0.31495513, 0.11535401, 0.35148579, 0.18075366, 0.19389029, 0.08548038, 0.15217848, 0.19976525, 0.20243536, 0.25413403, 0.72784895, 0.20917203, 0.13343318, 0.08898976, 0.23062395, 0.27564811, 0.34233545, 0.18439108, 0.26244743, 0.07358966, 0.07545393, 0.58289477, 0.32524163, 0.07374368, 0.18442543, 0.12958636, 0.2696356 , 0.18756169, 0.11827149, 0.33316798, 0.15683388, 0.05593736, 0.1856784 , 0.19879242, 0.22442752, 0.23856679, 0.22624447, 0.11213538, 0.12026965, 0.25985264, 0.50055825, 0.13438282, 0.20595772, ... 0.08248672, 0.72677529, 0.80857457, 0.20586513, 0.47596947, 0.15769514, 0.08850205, 0.16083444, 0.07485606, 0.07304545, 0.18594709, 0.0954647 , 2.51901922, 0.1055115 , 0.10995192, 0.54821221, 0.3098678 , 0.84624647, 0.16265487, 0.19637961, 0.10971489, 0.15174734, 0.20759024, 0.13325213, 0.49380788, 0.13177068, 0.18697702, 0.16572793, 0.49853711, 0.24387162, 0.23964506, 0.19749614, 0.70791164, 0.15848289, 0.27759852, 0.19001998, 0.26131136, 0.21886743, 0.10997396, 0.24131981, 0.11431693, 0.11110756, 0.6115091 , 0.08767059, 0.23483956, 0.19086222, 0.10834805, 0.10833937, 0.13314133, 0.27010614, 0.08072827, 0.1878972 , 0.2072152 , 0.19607113, 0.31546982, 0.29895169, 0.21528694, 0.07094348, 0.16626419, 0.23719245, 0.1359794 , 0.13518073, 0.30263685, 0.06922079, 0.57380417, 0.46551093, 0.23889615, 0.364586 , 0.23034022, 0.10063996, 0.12269451, 0.25981145, 0.3079617 , 0.37582332, 0.13643984, 0.31780538, 0.29426745, 0.14108259, 0.10929791, 0.57187571, 0.23080312, 0.12899524, 0.21813754, 0.25141642, 0.07688701, 0.14417158, 0.12121741, 0.33565333, 0.14715947, 0.10673218, 0.09397568, 0.14081268, 0.44149728, 0.06293998, 0.10423666, 0.14709606, 0.18111538, 0.17217239, 0.0626725 , 0.2394876 ]])
- chainPandasIndex
PandasIndex(Int64Index([0], dtype='int64', name='chain'))
- drawPandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
- omega_global_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3, 4, 5], dtype='int64', name='omega_global_dim_0'))
- betaX_Canada_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], dtype='int64', name='betaX_Canada_dim_0'))
- betaX_Canada_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='betaX_Canada_dim_1'))
- noise_chol_South Africa_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3, 4, 5], dtype='int64', name='noise_chol_South Africa_dim_0'))
- omega_New Zealand_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_New Zealand_dim_0'))
- omega_New Zealand_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_New Zealand_dim_1'))
- equationsPandasIndex
PandasIndex(Index(['dl_gdp', 'dl_cons', 'dl_gfcf'], dtype='object', name='equations'))
- lagsPandasIndex
PandasIndex(Int64Index([1, 2], dtype='int64', name='lags'))
- cross_varsPandasIndex
PandasIndex(Index(['dl_gdp', 'dl_cons', 'dl_gfcf'], dtype='object', name='cross_vars'))
- betaX_United States_dim_0PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45], dtype='int64', name='betaX_United States_dim_0'))
- betaX_United States_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='betaX_United States_dim_1'))
- noise_chol_United Kingdom_stds_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_United Kingdom_stds_dim_0'))
- noise_chol_New Zealand_stds_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_New Zealand_stds_dim_0'))
- omega_United Kingdom_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_United Kingdom_dim_0'))
- omega_United Kingdom_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_United Kingdom_dim_1'))
- omega_Australia_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_Australia_dim_0'))
- omega_Australia_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_Australia_dim_1'))
- noise_chol_South Africa_stds_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_South Africa_stds_dim_0'))
- omega_Ireland_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_Ireland_dim_0'))
- omega_Ireland_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_Ireland_dim_1'))
- noise_chol_Chile_corr_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_Chile_corr_dim_0'))
- noise_chol_Chile_corr_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_Chile_corr_dim_1'))
- noise_chol_United States_stds_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_United States_stds_dim_0'))
- omega_United States_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_United States_dim_0'))
- omega_United States_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_United States_dim_1'))
- noise_chol_New Zealand_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3, 4, 5], dtype='int64', name='noise_chol_New Zealand_dim_0'))
- omega_Chile_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_Chile_dim_0'))
- omega_Chile_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_Chile_dim_1'))
- noise_chol_United States_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3, 4, 5], dtype='int64', name='noise_chol_United States_dim_0'))
- noise_chol_United Kingdom_corr_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_United Kingdom_corr_dim_0'))
- noise_chol_United Kingdom_corr_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='noise_chol_United Kingdom_corr_dim_1'))
- betaX_United Kingdom_dim_0PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], dtype='int64', name='betaX_United Kingdom_dim_0'))
- betaX_United Kingdom_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='betaX_United Kingdom_dim_1'))
- betaX_Ireland_dim_0PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], dtype='int64', name='betaX_Ireland_dim_0'))
- betaX_Ireland_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='betaX_Ireland_dim_1'))
- omega_South Africa_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_South Africa_dim_0'))
- omega_South Africa_dim_1PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_South Africa_dim_1'))
- noise_chol_Canada_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3, 4, 5], dtype='int64', name='noise_chol_Canada_dim_0'))
- omega_global_corr_dim_0PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='omega_global_corr_dim_0'))
- omega_global_corr_dim_1PandasIndex
<xarray.Dataset> Dimensions: (chain: 1, draw: 500, omega_global_dim_0: 6, betaX_Canada_dim_0: 22, betaX_Canada_dim_1: 3, noise_chol_South Africa_dim_0: 6, omega_New Zealand_dim_0: 3, ... noise_chol_New Zealand_corr_dim_0: 3, noise_chol_New Zealand_corr_dim_1: 3, noise_chol_United States_corr_dim_0: 3, noise_chol_United States_corr_dim_1: 3, noise_chol_Chile_dim_0: 6, noise_chol_Ireland_stds_dim_0: 3) Coordinates: (12/73) * chain (chain) int64 0 * draw (draw) int64 0 1 2 3 ... 497 498 499 * omega_global_dim_0 (omega_global_dim_0) int64 0 1 2 3 4 5 * betaX_Canada_dim_0 (betaX_Canada_dim_0) int64 0 1 ... 21 * betaX_Canada_dim_1 (betaX_Canada_dim_1) int64 0 1 2 * noise_chol_South Africa_dim_0 (noise_chol_South Africa_dim_0) int64 ... ... ... * noise_chol_New Zealand_corr_dim_0 (noise_chol_New Zealand_corr_dim_0) int64 ... * noise_chol_New Zealand_corr_dim_1 (noise_chol_New Zealand_corr_dim_1) int64 ... * noise_chol_United States_corr_dim_0 (noise_chol_United States_corr_dim_0) int64 ... * noise_chol_United States_corr_dim_1 (noise_chol_United States_corr_dim_1) int64 ... * noise_chol_Chile_dim_0 (noise_chol_Chile_dim_0) int64 0 ... 5 * noise_chol_Ireland_stds_dim_0 (noise_chol_Ireland_stds_dim_0) int64 ... Data variables: (12/80) omega_global (chain, draw, omega_global_dim_0) float64 ... betaX_Canada (chain, draw, betaX_Canada_dim_0, betaX_Canada_dim_1) float64 ... noise_chol_South Africa (chain, draw, noise_chol_South Africa_dim_0) float64 ... omega_New Zealand (chain, draw, omega_New Zealand_dim_0, omega_New Zealand_dim_1) float64 ... lag_coefs_United States (chain, draw, equations, lags, cross_vars) float64 ... betaX_United States (chain, draw, betaX_United States_dim_0, betaX_United States_dim_1) float64 ... ... ... noise_chol_Chile (chain, draw, noise_chol_Chile_dim_0) float64 ... z_scale_alpha_United States (chain, draw) float64 0.2131 ... 0.... noise_chol_Ireland_stds (chain, draw, noise_chol_Ireland_stds_dim_0) float64 ... beta_hat_location (chain, draw) float64 -0.1648 ... 0... rho (chain, draw) float64 0.4541 ... 0.... z_scale_alpha_Canada (chain, draw) float64 0.06378 ... 0... Attributes: created_at: 2023-02-21T19:22:35.383920 arviz_version: 0.14.0 inference_library: pymc inference_library_version: 5.0.1
xarray.Dataset