Multilevel Models#
This notebook is part of the PyMC port of the Statistical Rethinking 2023 lecture series by Richard McElreath.
Video - Lecture 12 - Multilevel Models# Lecture 12 - Multilevel Models
# Ignore warnings
import warnings
import arviz as az
import numpy as np
import pandas as pd
import pymc as pm
import statsmodels.formula.api as smf
import utils as utils
import xarray as xr
from matplotlib import pyplot as plt
from matplotlib import style
from scipy import stats as stats
warnings.filterwarnings("ignore")
# Set matplotlib style
STYLE = "statistical-rethinking-2023.mplstyle"
style.use(STYLE)
Repeat observations#
At the end of Lecture 11 on Ordered Categories, McElreath alluded to leveraging repeat observations of stories and participants in the Trolley dataset to improve estimation
Using reapeat observations can lead to better estimators
TROLLEY = utils.load_data("Trolley")
N_TROLLEY_RESPONSES = len(TROLLEY)
N_RESPONSE_CATEGORIES = TROLLEY.response.max()
TROLLEY.head()
case | response | order | id | age | male | edu | action | intention | contact | story | action2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | cfaqu | 4 | 2 | 96;434 | 14 | 0 | Middle School | 0 | 0 | 1 | aqu | 1 |
1 | cfbur | 3 | 31 | 96;434 | 14 | 0 | Middle School | 0 | 0 | 1 | bur | 1 |
2 | cfrub | 4 | 16 | 96;434 | 14 | 0 | Middle School | 0 | 0 | 1 | rub | 1 |
3 | cibox | 3 | 32 | 96;434 | 14 | 0 | Middle School | 0 | 1 | 1 | box | 1 |
4 | cibur | 3 | 4 | 96;434 | 14 | 0 | Middle School | 0 | 1 | 1 | bur | 1 |
def plot_trolly_response_distribution(variable, n_display=50, error_kwargs={}):
gb = TROLLEY[[variable, "response"]].groupby(variable)
plot_data = gb.mean()
plot_data.reset_index(inplace=True)
plot_data = plot_data.iloc[:n_display]
# IQR
plot_data.loc[:, "error_lower"] = (
plot_data["response"] - gb.quantile(0.25).reset_index()["response"]
)
plot_data.loc[:, "error_upper"] = (
gb.quantile(0.75).reset_index()["response"] - plot_data["response"]
)
utils.plot_scatter(plot_data.index, plot_data.response, color="C0")
utils.plot_errorbar(
plot_data.index,
plot_data.response,
plot_data.error_lower.abs(),
plot_data.error_upper.abs(),
colors="C0",
**error_kwargs,
)
plt.ylim(1, 7)
plt.xlabel(f"{variable} index")
plt.ylabel("response")
plt.title(f"{variable} response distribution")
Variability in Story Responses#
Story repeats#
12 stories
TROLLEY.groupby("story").count()["case"]
story
aqu 662
boa 662
box 1324
bur 1324
car 662
che 662
pon 662
rub 662
sha 662
shi 662
spe 993
swi 993
Name: case, dtype: int64
plot_trolly_response_distribution("story")

Variatbility Participant Responses#
331 individuals
TROLLEY.groupby("id").count()["case"]
id
96;434 30
96;445 30
96;451 30
96;456 30
96;458 30
..
98;225 30
98;227 30
98;245 30
98;257 30
98;299 30
Name: case, Length: 331, dtype: int64
plot_trolly_response_distribution("id", error_kwargs={"error_width": 6})

Ways of modeling variability across observations#
Complete Pooling#
global \(\beta\) parameter
treat all unique categories (e.g. story and/or participant) as the same
underfits data because model isn’t flexible enough
No Pooling#
treat all unique categories as independent; each category gets its own \(\beta_{S}\)
model has “anderograde amnesia”
doesn’t share information across consecutive observations
inefficient
overfits data because model too flexible, and fits to individual noise
Partial Pooling (Multi-level Models)#
parameters are drawn from a global distribution that is shared across the population
allows flexibility without overfitting
shares information across observations
has “memory”
more efficient
learns faster
get adaptive regularization for free
resists overfitting
improves estimates for imbalanced sampling
Case Study: Reed Frog Survival#
48 group; “tanks”
Treatment: density, size, and predation level
Outcome: survival rate
FROGS = utils.load_data("reedfrogs")
N_TANKS = len(FROGS)
FROGS.head()
density | pred | size | surv | propsurv | |
---|---|---|---|---|---|
0 | 10 | no | big | 9 | 0.9 |
1 | 10 | no | big | 10 | 1.0 |
2 | 10 | no | big | 7 | 0.7 |
3 | 10 | no | big | 10 | 1.0 |
4 | 10 | no | small | 9 | 0.9 |
utils.draw_causal_graph(
edge_list=[("T", "S"), ("D", "S"), ("G", "S"), ("P", "S")],
node_props={
"T": {"label": "tank, T"},
"S": {"label": "survivial, S", "color": "red"},
"D": {"label": "density, D"},
"G": {"label": "size, G"},
"P": {"label": "predators, P"},
},
)
\(T\): tank ID
\(D\): tank density - the number of tadpoles in each tank - counts
\(G\): tank size - categorical (large/small)
\(P\): presence/absence of predators - categorical
\(S\): survival, the number of tadpoles that survived - counts
propsurv: survival rate \(\frac{S}{D}\)
Plot average survival rates for all tanks#
plt.scatter(FROGS.index, FROGS.propsurv, color="k")
# Plot average survival rate across tanks
global_mean = FROGS.propsurv.mean()
plt.axhline(
global_mean, color="k", linestyle="--", label=f"average tank survival: {global_mean:1.2}"
)
# Highlight different densities
density_change = FROGS[FROGS.density.diff() > 0].index.tolist()
density_change.append(N_TANKS - 1)
start = 0
density_labels = ["low", "medium", "high"]
for ii in range(3):
end = density_change[ii]
plt.axvspan(start, end, alpha=0.1, label=f"{density_labels[ii]} density", color=f"C{ii+2}")
start = end
plt.xlabel("tank")
plt.xlim([-5, N_TANKS])
plt.ylabel("proportion survival")
plt.legend();

Let’s build a (multi-level) model#
What about the prior variance \(\sigma\)?#
For now, let’s try setting \(\sigma\) manually via using cross-validation to see the effect on the multi-level model (we’ll estiamate it later)
# Set up data / coords
N_SURVIVED = FROGS["surv"].astype(float)
N_TRIALS = FROGS["density"].values.astype(float)
PREDATOR_ID, PREDATORS = pd.factorize(FROGS["pred"], sort=True)
# Run grid search over sigmas
import logging
# Turn off logging for simulation
pmyc_logger = logging.getLogger("pymc")
pmyc_logger.setLevel(logging.CRITICAL)
n_sigmas = 20
sigmas = np.linspace(0.1, 5, n_sigmas)
inferences = []
print("Running grid search...")
for sigma in sigmas:
print("\r", f"sigma={sigma:1.2}")
with pm.Model() as m:
# Prior
alpha_bar = pm.Normal("alpha_bar", 0, 1.5)
alpha = pm.Normal("alpha", alpha_bar, sigma, shape=N_TANKS)
# Likelihood -- record p_survived for visualization
p_survived = pm.Deterministic("p_survived", pm.math.invlogit(alpha))
S = pm.Binomial("survived", n=N_TRIALS, p=p_survived, observed=N_SURVIVED)
inference = pm.sample(progressbar=False)
# log-likelihood for LOOCV scores and model comparison
inference = pm.compute_log_likelihood(inference, progressbar=False)
inferences.append(inference)
# Turn logging back on
pmyc_logger.setLevel(logging.INFO)
Running grid search...
sigma=0.1
sigma=0.36
sigma=0.62
sigma=0.87
sigma=1.1
sigma=1.4
sigma=1.6
sigma=1.9
sigma=2.2
sigma=2.4
sigma=2.7
sigma=2.9
sigma=3.2
sigma=3.5
sigma=3.7
sigma=4.0
sigma=4.2
sigma=4.5
sigma=4.7
sigma=5.0
def plot_survival_posterior(inference, sigma=None, color="C0", hdi_prob=0.89):
plt.figure()
# Plot observations
plt.scatter(x=FROGS.index, y=FROGS.propsurv, color="k", s=50, zorder=3)
# Posterior per-tank mean survival probability
posterior_mean = inference.posterior.mean(dim=("chain", "draw"))["p_survived"]
utils.plot_scatter(FROGS.index, posterior_mean, color=color, zorder=50, alpha=1)
# Posterior HDI error bars
hdis = az.hdi(inference.posterior, var_names="p_survived", hdi_prob=hdi_prob)[
"p_survived"
].values
error_upper = hdis[:, 1] - posterior_mean
error_lower = posterior_mean - hdis[:, 0]
xs = np.arange(len(posterior_mean))
utils.plot_errorbar(
xs=xs,
ys=posterior_mean,
error_lower=error_lower,
error_upper=error_upper,
colors=color,
error_width=8,
)
# Add mean indicators
empirical_mean = FROGS.propsurv.mean()
plt.axhline(y=empirical_mean, c="k", linestyle="--", label="Global Mean")
# Posterior mean
global_posterior_mean = utils.invlogit(
inference.posterior.mean(dim=("chain", "draw"))["alpha_bar"]
)
plt.axhline(global_posterior_mean, linestyle="--", label="Posterior Mean")
# Add tank density indicators
plt.axvline(15.5, color="k", alpha=0.25)
plt.axvline(31.5, color="k", alpha=0.25)
if sigma is not None:
plt.title(f"$\\sigma={sigma:1.2}$")
plt.ylim([0, 1.05])
plt.xlabel("tank #")
plt.ylabel("proportion survival")
plt.legend()
# Show extremes of parameter grid
for idx in [0, -1]:
plot_survival_posterior(inferences[idx], sigmas[idx])


Identifying the optimal \(\sigma\) via Cross-validation#
\(\sigma=0.1\) underfits the data, the model isn’t flexible enough to capture the variability of the different tanks
\(\sigma=5.0\) overfits the data, the model is too flexible and the posterior centers around each datapoint
\(\sigma_{optimal}=?\) We can compare the LOOCV scores for models fit with each \(\sigma\) value in the parameter grid, and identify the model with the lowest score.
from collections import OrderedDict
def plot_model_comparisons(sigmas, inferences, multilevel_posterior=None):
plt.subplots(figsize=(10, 4))
comparisons = pm.compare(OrderedDict(zip(sigmas, inferences)), scale="deviance")
comparisons.sort_index(inplace=True)
utils.plot_scatter(
xs=sigmas, ys=comparisons["elpd_loo"], color="C0", label="Cross-validation score"
)
utils.plot_errorbar(
xs=sigmas,
ys=comparisons["elpd_loo"],
error_lower=comparisons["se"],
error_upper=comparisons["se"],
colors="C0",
)
# Highlight the optimal sigma
best = comparisons[comparisons["rank"] == 0]
plt.scatter(
x=best.index,
y=best["elpd_loo"],
s=300,
marker="*",
color="C1",
label="$\\sigma_{LOOCV}^*$:" + f" {best.index[0]:1.2}",
zorder=20,
)
# If provided, overlay the multilevel posterior (or, a scaled/offset version of it)
if multilevel_posterior is not None:
from scipy.stats import gaussian_kde
kde = gaussian_kde(multilevel_inference.posterior["sigma"][0])
sigma_grid = np.linspace(0.1, 5, 100)
sigma_posterior = kde(sigma_grid)
max_sigma_posterior = sigma_posterior.max()
multiplier = (0.7 * comparisons["elpd_loo"].max()) / max_sigma_posterior
offset = comparisons["elpd_loo"].min() * 0.95
plot_posterior = sigma_posterior * multiplier + offset
plt.plot(sigma_grid, plot_posterior, color="k", linewidth=3, label="Multi-level Posterior")
plt.xlim([0, 4])
plt.xlabel("$\\sigma$")
plt.ylabel("LOOCV Score (deviance)")
plt.legend()
# Output optimal parameters
optimal_sigma = best.index.values[0]
optimal_sigma_idx = sigmas.tolist().index(optimal_sigma)
return optimal_sigma_idx, optimal_sigma
optimal_sigma_idx, optimal_sigma = plot_model_comparisons(sigmas, inferences);

Model with the optimal \(\sigma\) identified through cross-validation#
plot_survival_posterior(inferences[optimal_sigma_idx], sigmas[optimal_sigma_idx])

The optimal model
is regularized, trading off bias and variance
demonstrates shrinkage:
posterior means do not hover over datapoints, but are “pulled” toward the global mean.
the amount of “pull” is stronger for datapoints further away from the mean
Building a Multilievel (Hierarchical) Model#
Automatic regularization#
In principle, we can estimate optimal hyperparameter values using cross-validation like we did above, but we don’t need to. We can simply learn the optimal \(\sigma\) by using a hierarhcical model structure, putting a prior distribution on that variance parameter.
Baby’s first the multi-level model#
Note that this prior is shared amongst all groups, allowing it to perform partial pooling.
Plot the priors for baby’s first multi-level model#
n_samples = 100_000
fig, axs = plt.subplots(1, 3, figsize=(10, 3))
sigmas_ = stats.expon(1).rvs(size=n_samples)
az.plot_dist(sigmas_, ax=axs[0])
axs[0].set_title("$\\sigma \\sim Exponential(1)$")
axs[0].set_xlim([0, 5])
axs[0].set_ylim([0, 1])
alpha_bars_ = stats.norm(0, 1.5).rvs(size=n_samples)
az.plot_dist(alpha_bars_, ax=axs[1])
axs[1].set_xlim([-6, 6])
axs[1].set_title("$\\bar \\alpha \\sim Normal(0, 1.5)$")
alphas_ = stats.norm.rvs(alpha_bars_, sigmas_)
az.plot_dist(alphas_, ax=axs[2])
axs[2].set_xlim([-6, 6])
axs[2].set_title("$\\alpha \\sim Normal(\\bar \\alpha, \\sigma)$")
plt.suptitle("Priors", fontsize=18);

Note the prior distribution for \(a_j\) (far right plot above) is a mixture of Normal distributions with different means (sampled from the \(\bar a\) prior distribution) and variances (sampled from the \(\sigma\) prior distribution). Therefore it isn’t a Normal, but a thicker-tailed distribution, more akin to a student-t
Fit the multi-level model#
with pm.Model() as multilevel_model:
# Priors
sigma = pm.Exponential("sigma", 1)
alpha_bar = pm.Normal("alpha_bar", 0, 1.5)
alpha = pm.Normal("alpha", alpha_bar, sigma, shape=N_TANKS)
# Likelihood (record log p_survived for visualization)
p_survived = pm.Deterministic("p_survived", pm.math.invlogit(alpha))
S = pm.Binomial("survived", n=N_TRIALS, p=p_survived, observed=N_SURVIVED)
multilevel_inference = pm.sample()
# Log-likelihood for model comparison
multilevel_inference = pm.compute_log_likelihood(multilevel_inference)
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [sigma, alpha_bar, alpha]
Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 1 seconds.
Summarize the multi-level model posterior#
az.summary(multilevel_inference, var_names=["alpha_bar", "sigma"])
mean | sd | hdi_3% | hdi_97% | mcse_mean | mcse_sd | ess_bulk | ess_tail | r_hat | |
---|---|---|---|---|---|---|---|---|---|
alpha_bar | 1.345 | 0.263 | 0.880 | 1.851 | 0.004 | 0.003 | 4341.0 | 2916.0 | 1.0 |
sigma | 1.622 | 0.215 | 1.237 | 2.022 | 0.004 | 0.003 | 2726.0 | 3092.0 | 1.0 |
The multi-level Mode’s Posterior HDI overlaps the optimal value found via cross-validation#
optimal_sigma_idx, optimal_sigma = plot_model_comparisons(
sigmas, inferences, multilevel_inference.posterior
);

multi-level models learn population variation automatically, efficiently
get regularization for free
Comparing multi-level and fixed-sigma model#
Fixed sigma model#
with pm.Model() as fixed_sigma_model:
# Sigma is fixed globally (no prior, and thus fewer defined params)
sigma = 1
# Prior
alpha_bar = pm.Normal("alpha_bar", 0, 1.5)
alpha = pm.Normal("alpha", alpha_bar, sigma, shape=N_TANKS)
# Likelihood -- record p_survived for visualization
p_survived = pm.Deterministic("p_survived", pm.math.invlogit(alpha))
S = pm.Binomial("survived", n=N_TRIALS, p=p_survived, observed=N_SURVIVED)
fixed_sigma_inference = pm.sample()
fixed_sigma_inference = pm.compute_log_likelihood(fixed_sigma_inference)
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [alpha_bar, alpha]
Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 1 seconds.
comparison = az.compare({"multi-level": multilevel_inference, "fixed-sigma": fixed_sigma_inference})
# Multi-level model has fewer effective parameters, despite having more defined parameters
assert comparison.loc["multi-level", "p_loo"] < comparison.loc["fixed-sigma", "p_loo"]
comparison
rank | elpd_loo | p_loo | elpd_diff | weight | se | dse | warning | scale | |
---|---|---|---|---|---|---|---|---|---|
multi-level | 0 | -111.620762 | 32.498049 | 0.000000 | 1.0 | 4.064596 | 0.000000 | True | log |
fixed-sigma | 1 | -122.344715 | 39.210856 | 10.723953 | 0.0 | 5.050636 | 3.077553 | True | log |
multi-level model performs better in terms of LOO score (no surprise)
multi-level model has fewer effective parameters despite having more programmed paramters
this is because the model is more efficient, and shares information across parameters
Demonstrating Posterior Uncertainty due to sample size#
plot_survival_posterior(multilevel_inference)

Small tanks (on the far left of the above figure) have fewer observations, and thus
wider posterior variances
larger amount of shrinkage toward the global mean
Large tanks (on the far right of the above figure) have more observations, and thus
tighter posterior variances
less shrinkage toward the global mean
Including the presence of predators#
PREDATOR_COLORS = ["C0" if p == 1 else "C1" for p in PREDATOR_ID]
# Multi-level model without predators (same plot as above, but with different color-coding)
plot_survival_posterior(multilevel_inference, color=PREDATOR_COLORS)
plt.title("Predators absent (blue) or present (red)");

Highlighting the tanks with predators shows that the presence of predators (red) decreases survival rates
Multilevel model with predator effects#
utils.draw_causal_graph(
edge_list=[("T", "S"), ("D", "S"), ("G", "S"), ("P", "S")],
node_props={
"T": {"label": "tank, T"},
"S": {"label": "survivial, S", "color": "red"},
"D": {"label": "density, D"},
"G": {"label": "size, G"},
"P": {"label": "predators, P"},
},
edge_props={("T", "S"): {"color": "red"}, ("P", "S"): {"color": "red"}},
)
TANK_ID = np.arange(N_TANKS)
with pm.Model() as predator_model:
# Global Priors
sigma = pm.Exponential("sigma", 1)
alpha_bar = pm.Normal("alpha_bar", 0, 1.5)
# Predator-specific prior
beta_predator = pm.Normal("beta_predator", 0, 0.5)
# Tank-specific prior
alpha = pm.Normal("alpha", alpha_bar, sigma, shape=N_TANKS)
# Record p_survived for visualization
p_survived = pm.math.invlogit(alpha[TANK_ID] + beta_predator * PREDATOR_ID)
p_survived = pm.Deterministic("p_survived", p_survived)
# Likelihood
S = pm.Binomial("survived", n=N_TRIALS, p=p_survived, observed=N_SURVIVED)
predator_inference = pm.sample()
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [sigma, alpha_bar, beta_predator, alpha]
Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 2 seconds.
# Predator model
plot_survival_posterior(predator_inference, color=PREDATOR_COLORS)

az.plot_dist(predator_inference.posterior["beta_predator"])
plt.xlabel("$\\beta_P$ (effect of predators)")
plt.ylabel("density")
plt.title("Predators have negative effect on survival");

Predictions vs Inference#
from matplotlib.lines import Line2D
from matplotlib.patches import Patch
# Should we probably be using the posterior predictive here, rather than the posterior?
multilevel_posterior_mean = multilevel_inference.posterior.mean(dim=("chain", "draw"))["p_survived"]
predator_posterior_mean = predator_inference.posterior.mean(dim=("chain", "draw"))["p_survived"]
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
plt.sca(axs[0])
for x, y, c in zip(multilevel_posterior_mean, predator_posterior_mean, PREDATOR_COLORS):
utils.plot_scatter(xs=x, ys=y, color=c, alpha=0.8)
plt.plot((0, 1), (0, 1), "k--")
plt.xlabel("p(survive) - model without predators")
plt.ylabel("p(survive) - model with predators")
# Legend
legend_kwargs = dict(marker="o", color="none", markersize=8, alpha=0.8)
legend_elements = [
Line2D([0], [0], markerfacecolor="C0", label="Predators", **legend_kwargs),
Line2D([0], [0], markerfacecolor="C1", label="No Predators", **legend_kwargs),
]
plt.legend(handles=legend_elements, loc="lower right")
plt.title("extremely similar predictions")
plt.axis("square")
plt.sca(axs[1])
az.plot_dist(
multilevel_inference.posterior["sigma"],
ax=axs[1],
color="C1",
label="mST",
plot_kwargs={"lw": 3},
)
az.plot_dist(
predator_inference.posterior["sigma"],
ax=axs[1],
color="C0",
label="mSTP",
plot_kwargs={"lw": 3},
)
plt.xlim([0, 2.5])
plt.xlabel(r"$\sigma$")
plt.title(r"very different $\sigma$ values");

Model without predators can predict survival just as well as the model with predators
This is because the multi-level model can still capture the tank-level variablity through the individual \(\alpha_T\)
However, adding predators “explains away” a lot more of the tank-level variance. This is demonstrated by the \(\sigma\) values for tank-level variability being smaller in the predator model. Thus the predator model has to consider less tank-based variablity in order to capture the variability in survival.
Varying Effect Superstitions#
~~Partial pooling requires random sampling from the population ❌~~
~~Number of categories / units must be large ❌~~
~~Variation must be Gaussian ❌~~
Gaussian priors can learn non-Gaussian distributions
Practical Difficulties#
Using multiple clusters simultaneously (e.g. participants AND stories)
Sampling efficiency – recoding (e.g. centered/non-centered priors)
Partial pooling on other parameters (e.g. slopes) or unobserved confounds?
These difficulties will be addressed in upcoming lectures on Multi-level models. 😅
BONUS: Fixed Effects, Multilevel Models, & Mundlak Machines#
Random Confounds#
utils.draw_causal_graph(
edge_list=[("G", "X"), ("G", "Y"), ("X", "Y"), ("Z", "Y")],
node_props={"G": {"style": "dashed"}, "unobserved": {"style": "dashed"}},
)
Estimand: Influence of \(X\) on \(Y\)
Outcome \(Y\) (e.g. tadpole survival)
Individual-level traits \(X\)
Group-level traits \(Z\)
Unobserved tank effects \(G\)
effects both \(X\) and \(Y\)
e.g. tank temperature
creates a backdoor path from \(X\) to \(Y\) (via fork)
We can’t directly measure \(G\).
However, if we have repeat observations, there’s some tricks up our sleeve that we can use.
Estimator?
Fixed Effects model
Multi-level model
Muldlak Machine
Simulate some data#
# Generate data
np.random.seed(12)
N_GROUPS = 30
N_IDS = 200
ALPHA = -2 # p(Y) < .5 on average
BETA_ZY = -0.5
BETA_XY = 1
# Group-level data
GROUP = np.random.choice(np.arange(N_GROUPS).astype(int), size=N_IDS, replace=True)
Z = stats.norm.rvs(size=N_GROUPS) # Observed group traits
U = stats.norm(0, 1.5).rvs(size=N_GROUPS) # Unobserved group confound
# Individual-level data
X = stats.norm.rvs(U[GROUP]) # Observed individual traits
p = utils.invlogit(ALPHA + BETA_XY * X + U[GROUP] + BETA_ZY * Z[GROUP])
Y = stats.bernoulli.rvs(p=p)
Show below that groups aren’t randomly sampled#
Naive Model#
with pm.Model() as naive_model:
# Priors
fixed_sigma = 10 # no pooling
alpha = pm.Normal("alpha", 0, fixed_sigma) # no group effects
beta_XY = pm.Normal("beta_XY", 0, 1)
beta_ZY = pm.Normal("beta_ZY", 0, 1)
# Likelihood
p = pm.math.invlogit(alpha + beta_XY * X + beta_ZY * Z[GROUP])
pm.Bernoulli("Y_obs", p=p, observed=Y)
naive_inference = pm.sample()
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [alpha, beta_XY, beta_ZY]
Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 1 seconds.
Fixed effect Model#
Estimate a different average rate for each group without pooling
\(\beta_Z\) and \(\beta_X\) are global parameters
Accounts for group-level confounding effect of \(G\) (via offsets for each group)
Problems:
Cannot identify any group-level effects \(Z\)
\(Z\) is unidentifiable because it’s added globally
there are an infinite number of equivalent combinations of \(\alpha_{G[i]} + \beta_Z Z_{G[i]}\)
can’t separate contribution of \(\beta_Z\) from \(\alpha\)
Can’t include group-level predictors with Mixed-effect model
Inefficient
with pm.Model() as fixed_effects_model:
# Priors
fixed_sigma = 10 # no pooling
alpha = pm.Normal("alpha", 0, fixed_sigma, shape=N_GROUPS)
beta_XY = pm.Normal("beta_XY", 0, 1)
beta_ZY = pm.Normal("beta_ZY", 0, 1)
# Likelihood
p = pm.math.invlogit(alpha[GROUP] + beta_XY * X + beta_ZY * Z[GROUP])
pm.Bernoulli("Y_obs", p=p, observed=Y)
fixed_effect_inference = pm.sample()
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [alpha, beta_XY, beta_ZY]
Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 3 seconds.
There were 53 divergences after tuning. Increase `target_accept` or reparameterize.
Multilevel Model#
Estimate a different average rate for each group with partial pooling
better estimates for \(G\) effects
at the expense of estimating \(X\) effects
compromises estimating the confound so that it can get better estimates for the group
CAN identify \(Z\) effects
CAN incorporate group-level predictors
with pm.Model() as multilevel_model:
# Priors
alpha_bar = pm.Normal("alpha_bar", 0, 1)
tau = pm.Exponential("tau", 1)
# NOTE: non-centered prior reparameterization for numerical stability
z = pm.Normal("z", 0, 1, shape=N_GROUPS)
alpha = alpha_bar + z * tau
beta_XY = pm.Normal("beta_XY", 0, 1)
beta_ZY = pm.Normal("beta_ZY", 0, 1)
# Likelihood
p = pm.math.invlogit(alpha[GROUP] + beta_XY * X + beta_ZY * Z[GROUP])
pm.Bernoulli("Y_obs", p=p, observed=Y)
multilevel_inference = pm.sample(target_accept=0.95)
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [alpha_bar, tau, z, beta_XY, beta_ZY]
Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 3 seconds.
Compare Models#
def compare_model_posteriors(inferences, labels, variable="beta_XY"):
"""Helper function to plot model posteriors"""
groundtruth = BETA_XY if variable == "beta_XY" else BETA_ZY
for ii, inference in enumerate(inferences):
az.plot_dist(inference.posterior[variable].values, color=f"C{ii}", label=labels[ii])
plt.axvline(groundtruth, label="actual", color="k", linestyle="--")
plt.title(f"posterior {variable}")
plt.legend();
compare_model_posteriors(
inferences=[naive_inference, fixed_effect_inference, multilevel_inference],
labels=["naive", "fixed", "multi-level"],
)

Fixed effect models are better (though not great in this simulation) than multi-level (and naive) model at identifying the individual-level group confound, but can’t identify any group effects.
compare_model_posteriors(
inferences=[naive_inference, fixed_effect_inference, multilevel_inference],
labels=["naive", "fixed", "multi-level"],
variable="beta_ZY",
)

Multi-level models can identify the group effects, though it can’t identify the confound. Fixed effect models can’t say much about the group level effects.
If interested completely in prediction, multi-level models are better
If interested in inference (i.e. via do-calculus or counterfactuals), you might want to use fixed effects (though group-level prediction accuracy may be poor)
Mundlak Machines#
utils.draw_causal_graph(
edge_list=[("G", "X"), ("G", "Y"), ("G", "X_bar"), ("X", "Y"), ("Z", "Y")],
node_props={"G": {"style": "dashed"}, "unobserved": {"style": "dashed"}},
)
Statistical Model#
Estimate a different average rate for each group with partial pooling
Takes advantage of the idea that conditioning on a descendent in a graph can (at least partially) deconfound a the parent/ancestor variable.
Uses the group-level mean as child of the confounding variables to reduce it’s confounding effect.
Problems:
somewhat inefficient
because groups have different size, we also need to consider the uncertainty in the estimation of the group-level means, which the Mundlak machine ignores
# Group-level average
Xbar = np.array([X[GROUP == g].mean() for g in range(N_GROUPS)])
with pm.Model() as mundlak_model:
# Priors
alpha_bar = pm.Normal("alpha_bar", 0, 1)
tau = pm.Exponential("tau", 1)
z = pm.Normal("z", 0, 1, shape=N_GROUPS)
# Note: uncentered reparameterization
alpha = alpha_bar + z * tau
beta_XY = pm.Normal("beta_XY", 0, 1)
beta_ZY = pm.Normal("beta_ZY", 0, 1)
beta_Xbar_Y = pm.Normal("beta_XbarY", 0, 1)
# Likelihood
p = pm.math.invlogit(
alpha[GROUP] + beta_XY * X + beta_ZY * Z[GROUP] + beta_Xbar_Y * Xbar[GROUP]
)
pm.Bernoulli("Y_obs", p=p, observed=Y)
mundlak_inference = pm.sample(target_accept=0.95)
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [alpha_bar, tau, z, beta_XY, beta_ZY, beta_XbarY]
Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 4 seconds.
compare_model_posteriors(
inferences=[naive_inference, fixed_effect_inference, multilevel_inference, mundlak_inference],
labels=["naive", "fixed", "multi-level", "Mundlak"],
)

compare_model_posteriors(
inferences=[naive_inference, fixed_effect_inference, multilevel_inference, mundlak_inference],
labels=["naive", "fixed", "multi-level", "Mundlak"],
variable="beta_ZY",
)

Mundlak machines are able to capture both Treatment and Group-level effects
Latent Mundlak Machine (aka “Full Luxury Bayes”)#
We model not only the observed outcome \(Y\) (as a function of \(X, G, Z\)), but also the treatment \(X\) (as a function of the confound G).
Unlike the Mundlak machine, which collapses \(\bar X\) into a point estimate, thus ignoring the uncertainty in that mean estimate, the Latent Mundlak estimates this uncertainty by including the submodel on \(X\).
akin to a measurment error model
So the original graph:
utils.draw_causal_graph(
edge_list=[("G", "X"), ("G", "Y"), ("X", "Y"), ("Z", "Y")],
node_props={"G": {"style": "dashed"}, "unobserved": {"style": "dashed"}},
)
1. \(X\) sub-model#
utils.draw_causal_graph(
edge_list=[
("G", "X"),
],
node_props={"G": {"style": "dashed"}, "unobserved": {"style": "dashed"}},
)
2. \(Y\) sub-model#
utils.draw_causal_graph(
edge_list=[("G", "Y"), ("X", "Y"), ("Z", "Y")],
node_props={"G": {"style": "dashed"}, "unobserved": {"style": "dashed"}},
)
with pm.Model() as latent_mundlak_model:
# Unobserved variable (could use various priors here)
G = pm.Normal("u_X", 0, 1, shape=N_GROUPS)
# ----------
# X sub-model
# X Priors
alpha_X = pm.Normal("alpha_X", 0, 1)
beta_GX = pm.Exponential("beta_GX", 1)
sigma_X = pm.Exponential("sigma_X", 1)
# X Likelihood
mu_X = alpha_X + beta_GX * G[GROUP]
X_ = pm.Normal("X", mu_X, sigma_X, observed=X)
# ----------
# Y sub-model
# Y priors
tau = pm.Exponential("tau", 1)
# Note: uncentered reparameterization
z = pm.Normal("z", 0, 1, size=N_GROUPS)
alpha_bar = pm.Normal("alph_bar", 0, 1)
alpha = alpha_bar + tau * z
beta_XY = pm.Normal("beta_XY", 0, 1)
beta_ZY = pm.Normal("beta_ZY", 0, 1)
beta_GY = pm.Normal("beta_GY", 0, 1)
# Y likelihood
p = pm.math.invlogit(alpha[GROUP] + beta_XY * X_ + beta_ZY * Z[GROUP] + beta_GY * G[GROUP])
pm.Bernoulli("Y", p=p, observed=Y)
latent_mundlak_inference = pm.sample(target_accept=0.95)
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [u_X, alpha_X, beta_GX, sigma_X, tau, z, alph_bar, beta_XY, beta_ZY, beta_GY]
Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 6 seconds.
compare_model_posteriors(
inferences=[
naive_inference,
fixed_effect_inference,
multilevel_inference,
mundlak_inference,
latent_mundlak_inference,
],
labels=["naive", "fixed", "multi-level", "Mundlak", "Luxury"],
)

compare_model_posteriors(
inferences=[
naive_inference,
fixed_effect_inference,
multilevel_inference,
mundlak_inference,
latent_mundlak_inference,
],
labels=["naive", "fixed", "multi-level", "Mundlak", "Luxury"],
variable="beta_ZY",
)

Random Confounds: Summary#
Should you use fixed effects? sometimes, but generally Full-luxury is the way to go
Should you use Mundlak Machine / Average X?
Sometimes: it does simplify numerical compuation, but at the expense of losing uncertainty estimation.
Usually have the compute power anyways, so why not just use FLB?
Use full generative model
no single solution, so just be explicit about model
License notice#
All the notebooks in this example gallery are provided under the MIT License which allows modification, and redistribution for any use provided the copyright and license notices are preserved.
Citing PyMC examples#
To cite this notebook, use the DOI provided by Zenodo for the pymc-examples repository.
Important
Many notebooks are adapted from other sources: blogs, books… In such cases you should cite the original source as well.
Also remember to cite the relevant libraries used by your code.
Here is an citation template in bibtex:
@incollection{citekey,
author = "<notebook authors, see above>",
title = "<notebook title>",
editor = "PyMC Team",
booktitle = "PyMC examples",
doi = "10.5281/zenodo.5654871"
}
which once rendered could look like: