pymc.model.core.Model.dlogp#

Model.dlogp(vars=None, jacobian=True)[source]#

Gradient of the models log-probability w.r.t. vars.

Parameters:
varslist of random variables or potential terms, optional

Compute the gradient with respect to those variables. If None, use all free and observed random variables, as well as potential terms in model.

jacobianbool

Whether to include jacobian terms in logprob graph. Defaults to True.

Returns:
dlogp graph