pymc.sample_prior_predictive#
- pymc.sample_prior_predictive(draws=500, model=None, var_names=None, random_seed=None, return_inferencedata=True, idata_kwargs=None, compile_kwargs=None, samples=None)[source]#
Generate samples from the prior predictive distribution.
- Parameters:
- draws
int
Number of samples from the prior predictive to generate. Defaults to 500.
- model
Model
(optionalif
in
with
context
) - var_names
Iterable
[str
] A list of names of variables for which to compute the prior predictive samples. Defaults to both observed and unobserved RVs. Transformed values are not allowed.
- random_seed
int
,RandomState
orGenerator
, optional Seed for the random number generator.
- return_inferencedatabool
Whether to return an
arviz.InferenceData
(True) object or a dictionary (False). Defaults to True.- idata_kwargs
dict
, optional Keyword arguments for
pymc.to_inference_data()
- compile_kwargs: dict, optional
Keyword arguments for
pymc.pytensorf.compile_pymc()
.- samples
int
Number of samples from the prior predictive to generate. Deprecated in favor of draws.
- draws
- Returns:
arviz.InferenceData
orDict
An ArviZ
InferenceData
object containing the prior and prior predictive samples (default), or a dictionary with variable names as keys and samples as numpy arrays.