pymc.LKJCorr#
- class pymc.LKJCorr(name, n, eta, *, return_matrix=False, **kwargs)[source]#
The LKJ (Lewandowski, Kurowicka and Joe) log-likelihood.
The LKJ distribution is a prior distribution for correlation matrices. If eta = 1 this corresponds to the uniform distribution over correlation matrices. For eta -> oo the LKJ prior approaches the identity matrix.
Support
Upper triangular matrix with values in [-1, 1]
- Parameters:
- ntensor_like of
int
Dimension of the covariance matrix (n > 1).
- etatensor_like of
float
The shape parameter (eta > 0) of the LKJ distribution. eta = 1 implies a uniform distribution of the correlation matrices; larger values put more weight on matrices with few correlations.
- return_matrixbool, default=False
If True, returns the full correlation matrix. False only returns the values of the upper triangular matrix excluding diagonal in a single vector of length n(n-1)/2 for memory efficiency
- ntensor_like of
Notes
This is mainly useful if you want the standard deviations to be fixed, as LKJCholsekyCov is optimized for the case where they come from a distribution.
References
[LKJ2009]Lewandowski, D., Kurowicka, D. and Joe, H. (2009). “Generating random correlation matrices based on vines and extended onion method.” Journal of multivariate analysis, 100(9), pp.1989-2001.
Examples
with pm.Model() as model: # Define the vector of fixed standard deviations sds = 3*np.ones(10) corr = pm.LKJCorr( 'corr', eta=4, n=10, return_matrix=True ) # Define a new MvNormal with the given correlation matrix vals = sds*pm.MvNormal('vals', mu=np.zeros(10), cov=corr, shape=10) # Or transform an uncorrelated normal distribution: vals_raw = pm.Normal('vals_raw', shape=10) chol = pt.linalg.cholesky(corr) vals = sds*pt.dot(chol,vals_raw) # The matrix is internally still sampled as a upper triangular vector # If you want access to it in matrix form in the trace, add pm.Deterministic('corr_mat', corr)
Methods
LKJCorr.dist
(n, eta, *[, return_matrix])