pymc.EulerMaruyama#
- class pymc.EulerMaruyama(name, dt, sde_fn, *args, steps=None, **kwargs)[source]#
Stochastic differential equation discretized with the Euler-Maruyama method.
- Parameters:
- dt
float
time step of discretization
- sde_fn
callable()
function returning the drift and diffusion coefficients of SDE
- sde_pars
tuple
parameters of the SDE, passed as
*args
tosde_fn
- init_distunnamed_distribution, optional
Scalar distribution for initial values. Distributions should have shape (*shape[:-1]). If not, it will be automatically resized. Defaults to pm.Normal.dist(0, 100, shape=…).
Warning
init_dist will be cloned, rendering it independent of the one passed as input.
- dt
Methods
EulerMaruyama.dist
(dt, sde_fn, sde_pars, *)Creates a tensor variable corresponding to the cls distribution.