pymc.gp.MarginalKron.marginal_likelihood#
- MarginalKron.marginal_likelihood(name, Xs, y, sigma, is_observed=True, **kwargs)[source]#
Returns the marginal likelihood distribution, given the input locations cartesian(*Xs) and the data y.
- Parameters:
- name
str
Name of the random variable
- Xs
list
of array_like Function input values for each covariance function. Each entry must be passable to its respective covariance without error. The total covariance function is measured on the full grid cartesian(*Xs).
- yarray_like
Data that is the sum of the function with the GP prior and Gaussian noise. Must have shape (n, ).
- sigma
float
,Variable
Standard deviation of the white Gaussian noise.
- is_observedbool, default
True
Deprecated. Whether to set y as an observed variable in the model.
- **kwargs
Extra keyword arguments that are passed to
KroneckerNormal
distribution constructor.
- name