pymc.FullRank.set_size_and_deterministic#
- FullRank.set_size_and_deterministic(node, s, d, more_replacements=None)#
Dev - after node is sampled via
symbolic_sample_over_posterior()
orsymbolic_single_sample()
new random generator can be allocated and applied to node- Parameters:
- node: :class:`Variable`
PyTensor node with symbolically applied VI replacements
- s: scalar
desired number of samples
- d: bool or int
whether sampling is done deterministically
- more_replacements: dict
more replacements to apply
- Returns:
Variable
with
applied
replacements
,ready
to
use