pymc.gp.HSGP.prior#

HSGP.prior(name, X, dims=None, hsgp_coeffs_dims=None, *args, **kwargs)[source]#

Return the (approximate) GP prior distribution evaluated over the input locations X.

For usage examples, refer to pm.gp.Latent.

Parameters:
name: str

Name of the random variable

X: array-like

Function input values.

dims: str, default None

Dimension name for the GP random variable.

hsgp_coeffs_dims: str, default None

Dimension name for the HSGP basis vectors.