pymc.logp#
- pymc.logp(rv, value, warn_rvs=None, **kwargs)[source]#
Create a graph for the log-probability of a random variable.
- Parameters:
- rv
TensorVariable
- valuetensor_like
Should be the same type (shape and dtype) as the rv.
- warn_rvsbool, default
True
Warn if RVs were found in the logp graph. This can happen when a variable has other other random variables as inputs. In that case, those random variables should be replaced by their respective values. pymc.logprob.conditional_logp can also be used as an alternative.
- rv
- Returns:
- logp
TensorVariable
- logp
- Raises:
RuntimeError
If the logp cannot be derived.
Examples
Create a compiled function that evaluates the logp of a variable
import pymc as pm import pytensor.tensor as pt mu = pt.scalar("mu") rv = pm.Normal.dist(mu, 1.0) value = pt.scalar("value") rv_logp = pm.logp(rv, value) # Use .eval() for debugging print(rv_logp.eval({value: 0.9, mu: 0.0})) # -1.32393853 # Compile a function for repeated evaluations rv_logp_fn = pm.compile_pymc([value, mu], rv_logp) print(rv_logp_fn(value=0.9, mu=0.0)) # -1.32393853
Derive the graph for a transformation of a RandomVariable
import pymc as pm import pytensor.tensor as pt mu = pt.scalar("mu") rv = pm.Normal.dist(mu, 1.0) exp_rv = pt.exp(rv) value = pt.scalar("value") exp_rv_logp = pm.logp(exp_rv, value) # Use .eval() for debugging print(exp_rv_logp.eval({value: 0.9, mu: 0.0})) # -0.81912844 # Compile a function for repeated evaluations exp_rv_logp_fn = pm.compile_pymc([value, mu], exp_rv_logp) print(exp_rv_logp_fn(value=0.9, mu=0.0)) # -0.81912844
Define a CustomDist logp
import pymc as pm import pytensor.tensor as pt def normal_logp(value, mu, sigma): return pm.logp(pm.Normal.dist(mu, sigma), value) with pm.Model() as model: mu = pm.Normal("mu") sigma = pm.HalfNormal("sigma") pm.CustomDist("x", mu, sigma, logp=normal_logp)