pymc.step_methods.Slice#

class pymc.step_methods.Slice(*args, **kwargs)[source]#

Univariate slice sampler step method.

Parameters:
varslist, optional

List of value variables for sampler.

wfloat, default 1.0

Initial width of slice.

tunebool, default True

Flag for tuning.

modelModel, optional

Optional model for sampling step. It will be taken from the context if not provided.

iter_limitint, default numpy.inf

Maximum number of iterations for the slice sampler.

rng: RandomGenerator

An object that can produce be used to produce the step method’s Generator object. Refer to pymc.util.get_random_generator() for more information.

Methods

Slice.__init__([vars, w, tune, model, ...])

Create the ArrayStepShared object.

Slice.astep(apoint)

Perform a single sample step in a raveled and concatenated parameter space.

Slice.competence(var, has_grad)

Slice.set_rng(rng)

Slice.step(point)

Perform a single step of the sampler.

Slice.stop_tuning()

Attributes

default_blocked

name

sampling_state

stats_dtypes

A list containing <=1 dictionary that maps stat names to dtypes.

stats_dtypes_shapes

Maps stat names to dtypes and shapes.

vars

Variables that the step method is assigned to.