pymc.VonMises#
- class pymc.VonMises(name, *args, rng=None, dims=None, initval=None, observed=None, total_size=None, transform=UNSET, default_transform=UNSET, **kwargs)[source]#
Univariate VonMises log-likelihood.
The pdf of this distribution is
\[f(x \mid \mu, \kappa) = \frac{e^{\kappa\cos(x-\mu)}}{2\pi I_0(\kappa)}\]where \(I_0\) is the modified Bessel function of order 0.
(
Source code
,png
,hires.png
,pdf
)Support
\(x \in [-\pi, \pi]\)
Mean
\(\mu\)
Variance
\(1-\frac{I_1(\kappa)}{I_0(\kappa)}\)
- Parameters:
- mutensor_like of
float
, default 0.0 Mean.
- kappatensor_like of
float
, default 1.0 Concentration (\(\frac{1}{\kappa}\) is analogous to \(\sigma^2\)).
- mutensor_like of
Methods
VonMises.dist
([mu, kappa])Create a tensor variable corresponding to the cls distribution.