pymc.SkewStudentT#

class pymc.SkewStudentT(name, *args, rng=None, dims=None, initval=None, observed=None, total_size=None, transform=UNSET, default_transform=UNSET, **kwargs)[source]#

Skewed Student’s T distribution log-likelihood.

This follows Jones and Faddy (2003)

The pdf of this distribution is

\[f(t)=f(t ; a, b)=C_{a, b}^{-1}\left\{1+\frac{t}{\left(a+b+t^2\right)^{1 / 2}}\right\}^{a+1 / 2}\left\{1-\frac{t}{\left(a+b+t^2\right)^{1 / 2}}\right\}^{b+1 / 2}\]

where

\[C_{a, b}=2^{a+b-1} B(a, b)(a+b)^{1 / 2}\]

Support

\(x \in [\infty, \infty)\)

Mean

\(E(T)=\frac{(a-b) \sqrt{(a+b)}}{2} \frac{\Gamma\left(a-\frac{1}{2}\right) \Gamma\left(b-\frac{1}{2}\right)}{\Gamma(a) \Gamma(b)}\)

Parameters:
atensor_like of float

First kurtosis parameter (a > 0).

btensor_like of float

Second kurtosis parameter (b > 0).

mutensor_like of float

Location parameter.

sigmatensor_like of float

Scale parameter (sigma > 0). Converges to the standard deviation as a and b become close (only required if lam is not specified). Defaults to 1.

lamtensor_like of float, optional

Scale parameter (lam > 0). Converges to the precision as a and b become close (only required if sigma is not specified). Defaults to 1.

Methods

SkewStudentT.dist(a, b, *[, mu, sigma, lam])

Create a tensor variable corresponding to the cls distribution.