Skip to main content
Local search
PyMC example gallery - Home PyMC example gallery - Home
  • Home
  • Examples
  • Learn
  • API
  • Community
  • Contributing
  • GitHub
  • Mastodon
  • Twitter
  • YouTube
  • Discourse
  • Home
  • Examples
  • Learn
  • API
  • Community
  • Contributing
  • GitHub
  • Mastodon
  • Twitter
  • YouTube
  • Discourse

Categories

beginner
intermediate
advanced

Tags

  • ABC
  • BART
  • Bayes Factors
  • Bayesian workflow
  • CO2
  • DEMetropolis
  • DEMetropolis(Z)
  • JAX
  • ODE
  • PCA
  • PyTensor
  • Reinforcement Learning
  • SMC
  • Simpson's paradox
  • ab test
  • approximation
  • auto-imputation
  • autoregressive
  • bayesian imputation
  • bayesian inference
  • bayesian structural timeseries
  • bayesian workflow
  • binned data
  • binomial regression
  • calibration
  • case study
  • categorical regression
  • categorical variables
  • causal impact
  • causal inference
  • censored
  • cfa
  • classification
  • competing risks
  • confounding
  • controls
  • copula
  • correlated features
  • count data
  • counterfactuals
  • cox process
  • cross validation
  • debiased machine learning
  • debugging
  • deployment
  • diagnostics
  • difference in differences
  • discrete choice
  • do-operator
  • extreme
  • factor analysis
  • forecasting
  • frailty model
  • gaussian process
  • gaussian processes
  • generalized linear model
  • generalized linear models
  • gradient-free inference
  • graph mutation
  • hamiltonian monte carlo
  • hidden markov model
  • hierarchical
  • hierarchical model
  • hilbert space approximation
  • hypothesis testing
  • inference
  • latent gaussian process
  • linear model
  • linear regression
  • logistic regression
  • longitudinal data
  • loo
  • matrix factorization
  • mcmc
  • measurement error
  • mediation
  • minibatch
  • missing covariate values
  • missing data
  • missing values
  • mixture model
  • model averaging
  • model comparison
  • model expansion
  • model fitting
  • moderation
  • multi-output
  • multilevel models
  • negative binomial regression
  • neural networks
  • nonparametric
  • numba
  • ordered categories
  • ordinal features
  • ordinal regression
  • out of sample predictions
  • outliers
  • panel data
  • parameter estimation
  • path analysis
  • patsy
  • perceptron
  • poisson
  • posterior predictive
  • prediction
  • priors
  • probability
  • product recommendation
  • propensity scores
  • prophet
  • quantile
  • quasi experiments
  • r-datasets
  • regression
  • robust
  • sampling
  • scaling
  • scientific workflow
  • sem
  • shared data
  • social networks
  • spatial
  • spline
  • splines
  • sports
  • statistical rethinking
  • step method
  • survival analysis
  • t-process
  • time series
  • time-to-failure
  • truncated
  • variational inference
  • vector autoregressive model
  • waic
  • weibull
  • Posts by Raul-ing Average

Posts by Raul-ing Average

Kronecker Structured Covariances

  • 12 October 2022
  • Bill Engels , Raul-ing Average , Christopher Krapu , Danh Phan , Alex Andorra
  • intermediate
  • gaussian process

PyMC contains implementations for models that have Kronecker structured covariances. This patterned structure enables Gaussian process models to work on much larger datasets. Kronecker structure can be exploited when

Read more ...


Support PyMC

© Copyright 2022, PyMC Community.

Created using Sphinx 8.1.3.

Built with the PyData Sphinx Theme 0.16.0.