pymc.gp.cov.ScaledCov#
- class pymc.gp.cov.ScaledCov(input_dim, cov_func, scaling_func, args=None, active_dims=None)[source]#
Construct a kernel by multiplying a base kernel with a scaling function defined using PyTensor. The scaling function is non-negative, and can be parameterized.
\[k(x, x') = \phi(x) k_{\text{base}}(x, x') \phi(x')\]- Parameters:
- cov_func: Covariance
Base kernel or covariance function
- scaling_func: callable
PyTensor function of X and additional optional arguments.
- args: optional, tuple or list of scalars or PyMC variables
Additional inputs (besides X or Xs) to lengthscale_func.
Methods
ScaledCov.__init__
(input_dim, cov_func, ...)ScaledCov.full
(X[, Xs])Attributes
n_dims
The dimensionality of the input, as taken from the active_dims.