pymc.KLqp#
- class pymc.KLqp(approx, beta=1.0)[source]#
Kullback Leibler Divergence Inference
General approach to fit Approximations that define \(logq\) by maximizing ELBO (Evidence Lower Bound). In some cases rescaling the regularization term KL may be beneficial
\[ELBO_\beta = \log p(D|\theta) - \beta KL(q||p)\]- Parameters:
- approx: :class:`Approximation`
Approximation to fit, it is required to have logQ
- beta: float
Scales the regularization term in ELBO (see Christopher P. Burgess et al., 2017)
References
Christopher P. Burgess et al. (NIPS, 2017) Understanding disentangling in \(\beta\)-VAE arXiv preprint 1804.03599
Methods
KLqp.__init__
(approx[, beta])KLqp.fit
([n, score, callbacks, progressbar, ...])Perform Operator Variational Inference
KLqp.refine
(n[, progressbar, progressbar_theme])Refine the solution using the last compiled step function
KLqp.run_profiling
([n, score])Attributes
approx