pymc.FullRankADVI#
- class pymc.FullRankADVI(*args, **kwargs)[source]#
Full Rank Automatic Differentiation Variational Inference (ADVI)
- Parameters:
- model: :class:`pymc.Model`
PyMC model for inference
- random_seed: None or int
- start: `dict[str, np.ndarray]` or `StartDict`
starting point for inference
References
Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., and Blei, D. M. (2016). Automatic Differentiation Variational Inference. arXiv preprint arXiv:1603.00788.
Geoffrey Roeder, Yuhuai Wu, David Duvenaud, 2016 Sticking the Landing: A Simple Reduced-Variance Gradient for ADVI approximateinference.org/accepted/RoederEtAl2016.pdf
Kingma, D. P., & Welling, M. (2014). Auto-Encoding Variational Bayes. stat, 1050, 1.
Methods
FullRankADVI.__init__
(*args, **kwargs)FullRankADVI.fit
([n, score, callbacks, ...])Perform Operator Variational Inference
FullRankADVI.refine
(n[, progressbar, ...])Refine the solution using the last compiled step function
FullRankADVI.run_profiling
([n, score])Attributes
approx