pymc.gp.Marginal#
- class pymc.gp.Marginal(*, mean_func=<pymc.gp.mean.Zero object>, cov_func=<pymc.gp.cov.Constant object>)[source]#
Marginal Gaussian process.
The gp.Marginal class is an implementation of the sum of a GP prior and additive noise. It has marginal_likelihood, conditional and predict methods. This GP implementation can be used to implement regression on data that is normally distributed. For more information on the marginal_likelihood, conditional and predict methods, see their docstrings.
- Parameters:
- mean_func
Mean
, defaultZero
The mean function.
- cov_func2D array_like, or
Covariance
, defaultConstant
The covariance function.
- mean_func
Examples
# A one dimensional column vector of inputs. X = np.linspace(0, 1, 10)[:, None] with pm.Model() as model: # Specify the covariance function. cov_func = pm.gp.cov.ExpQuad(1, ls=0.1) # Specify the GP. The default mean function is `Zero`. gp = pm.gp.Marginal(cov_func=cov_func) # Place a GP prior over the function f. sigma = pm.HalfCauchy("sigma", beta=3) y_ = gp.marginal_likelihood("y", X=X, y=y, sigma=sigma) ... # After fitting or sampling, specify the distribution # at new points with .conditional Xnew = np.linspace(-1, 2, 50)[:, None] with model: fcond = gp.conditional("fcond", Xnew=Xnew)
Methods
Marginal.__init__
(*[, mean_func, cov_func])Marginal.conditional
(name, Xnew[, ...])Returns the conditional distribution evaluated over new input locations Xnew.
Marginal.marginal_likelihood
(name, X, y[, ...])Returns the marginal likelihood distribution, given the input locations X and the data y.
Marginal.predict
(Xnew[, point, diag, ...])Return the mean vector and covariance matrix of the conditional distribution as numpy arrays, given a point, such as the MAP estimate or a sample from a trace.
Marginal.prior
(name, X, *args, **kwargs)Attributes
X
sigma
y