BetaNegativeBinomial#
- class pymc_experimental.distributions.BetaNegativeBinomial(name, alpha, beta, r, **kwargs)[source]#
Beta Negative Binomial distribution.
The pmf of this distribution is
\[f(x \mid \alpha, \beta, r) = \frac{B(r + x, \alpha + \beta)}{B(r, \alpha)} \frac{\Gamma(x + \beta)}{x! \Gamma(\beta)}\]where \(B\) is the Beta function and \(\Gamma\) is the Gamma function.
For more information, see https://en.wikipedia.org/wiki/Beta_negative_binomial_distribution.
(
Source code
,png
,hires.png
,pdf
)Support
\(x \in \mathbb{N}_0\)
Mean
\({\begin{cases}{\frac {r\beta }{\alpha -1}}&{\text{if}}\ \alpha >1\\\infty &{\text{otherwise}}\ \end{cases}}\)
Variance
\({\displaystyle {\begin{cases}{\frac {r\beta (r+\alpha -1)(\beta +\alpha -1)}{(\alpha -2){(\alpha -1)}^{2}}}&{\text{if}}\ \alpha >2\\\infty &{\text{otherwise}}\ \end{cases}}}\)
- Parameters:
alpha (tensor_like of float) – shape of the beta distribution (alpha > 0).
beta (tensor_like of float) – shape of the beta distribution (beta > 0).
r (tensor_like of float) – number of successes until the experiment is stopped (integer but can be extended to real)
- __init__()#
Methods
__init__
()beta_negative_binomial_dist
(alpha, beta, r, size)beta_negative_binomial_logp
(value, alpha, ...)dist
(alpha, beta, r, **kwargs)