VIP#
- class pymc_extras.model.transforms.autoreparam.VIP(_logit_lambda: dict[str, TensorSharedVariable])[source]#
Helper to reparemetrize VIP model.
Manipulation of \(\lambda\) in the below equation is done using this helper class.
\[\begin{split}\begin{align*} \eta_{k} &\sim \text{normal}(\lambda_{k} \cdot \mu, \sigma^{\lambda_{k}})\\ \theta_{k} &= \mu + \sigma^{1 - \lambda_{k}} ( \eta_{k} - \lambda_{k} \cdot \mu) \sim \text{normal}(\mu, \sigma). \end{align*}\end{split}\]- __init__(_logit_lambda: dict[str, TensorSharedVariable]) None #
Methods
__init__
(_logit_lambda)fit
(*args, **kwargs)Set \(\lambda_k\) using Variational Inference.
get_lambda
()Get \(\lambda_k\) that are currently used by the model.
set_all_lambda
(value)Set \(\lambda_k\) globally.
set_lambda
(**kwargs)Set \(\lambda_k\) per variable.
truncate_all_lambda
(value)Truncate all \(\lambda_k\) with \(\varepsilon\).
truncate_lambda
(**kwargs)Truncate \(\lambda_k\) with \(\varepsilon\).
Attributes
variational_parameters
Return raw \(\operatorname{logit}(\lambda_k)\) for custom optimization.