Logo image Logo image
  • Home
  • Examples
  • Learn
  • API
  • Community
  • Contributing

Categories

Tutorial
How-to
Explanation
Reference

Tags

  • ABC
  • Aesara
  • BART
  • Bayes Factors
  • Bayesian additive regression trees
  • CO2
  • JAX
  • SMC
  • Simpson's paradox
  • bayesian workflow
  • binned data
  • binomial regression
  • case study
  • causal inference
  • censored
  • censoring
  • classification
  • counterfactuals
  • cross validation
  • diagnostics
  • external likelihood
  • factor analysis
  • gaussian process
  • generalized linear model
  • generalized linear models
  • hidden markov model
  • hierarchical
  • hierarchical model
  • hypothesis testing
  • linear model
  • loo
  • matrix factorization
  • mediation
  • minibatch
  • mixture model
  • model comparison
  • model expansion
  • moderation
  • multi level model
  • negative binomial regression
  • neural networks
  • non-parametric
  • parameter estimation
  • path analysis
  • patsy
  • pca
  • perceptron
  • posterior predictive
  • predictions
  • product recommendation
  • prophet
  • pymc3.Minibatch
  • pymc3.Model
  • pymc3.NUTS
  • pymc3.Normal
  • pymc3.Uniform
  • quasi experimental design
  • regression
  • robust analysis
  • shared data
  • spline
  • sports
  • survival analysis
  • time series
  • truncated
  • truncation
  • variational inference
  • waic

Posts tagged pymc3.Uniform

GLM: Mini-batch ADVI on hierarchical regression model

  • 23 September 2021
  • Category: intermediate
  • Tags: generalized linear model hierarchical model pymc3.Minibatch pymc3.Model pymc3.NUTS pymc3.Normal pymc3.Uniform variational inference

Unlike Gaussian mixture models, (hierarchical) regression models have independent variables. These variables affect the likelihood function, but are not random variables. When using mini-batch, we should take care of that.

Read more ...


© Copyright 2022, PyMC Community.

Created using Sphinx 5.0.2.