{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "(ABC_introduction)=\n", "# Approximate Bayesian Computation\n", ":::{post} May 31, 2022\n", ":tags: SMC, ABC \n", ":category: beginner, explanation\n", ":::" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Running on PyMC v5.9.1\n" ] } ], "source": [ "import arviz as az\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pymc as pm\n", "\n", "print(f\"Running on PyMC v{pm.__version__}\")" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "%load_ext watermark\n", "az.style.use(\"arviz-darkgrid\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Sequential Monte Carlo - Approximate Bayesian Computation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Approximate Bayesian Computation methods (also called likelihood free inference methods), are a group of techniques developed for inferring posterior distributions in cases where the likelihood function is intractable or costly to evaluate. This does not mean that the likelihood function is not part of the analysis, it just the we are approximating the likelihood, and hence the name of the ABC methods.\n", "\n", "ABC comes useful when modeling complex phenomena in certain fields of study, like systems biology. Such models often contain unobservable random quantities, which make the likelihood function hard to specify, but data can be simulated from the model. \n", "\n", "These methods follow a general form:\n", "\n", "1- Sample a parameter $\\theta^*$ from a prior/proposal distribution $\\pi(\\theta)$.\n", "\n", "2- Simulate a data set $y^*$ using a function that takes $\\theta$ and returns a data set of the same dimensions as the observed data set $y_0$ (simulator).\n", "\n", "3- Compare the simulated dataset $y^*$ with the experimental data set $y_0$ using a distance function $d$ and a tolerance threshold $\\epsilon$. \n", "\n", "In some cases a distance function is computed between two summary statistics $d(S(y_0), S(y^*))$, avoiding the issue of computing distances for entire datasets.\n", "\n", "As a result we obtain a sample of parameters from a distribution $\\pi(\\theta | d(y_0, y^*)) \\leqslant \\epsilon$. \n", "\n", "If $\\epsilon$ is sufficiently small this distribution will be a good approximation of the posterior distribution $\\pi(\\theta | y_0)$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[Sequential monte carlo](https://docs.pymc.io/notebooks/SMC2_gaussians.html?highlight=smc) ABC is a method that iteratively morphs the prior into a posterior by propagating the sampled parameters through a series of proposal distributions $\\phi(\\theta^{(i)})$, weighting the accepted parameters $\\theta^{(i)}$ like:\n", "\n", "$$w^{(i)} \\propto \\frac{\\pi(\\theta^{(i)})}{\\phi(\\theta^{(i)})}$$\n", "\n", "It combines the advantages of traditional SMC, i.e. ability to sample from distributions with multiple peaks, but without the need for evaluating the likelihood function. \n", "\n", "\n", "_(Lintusaari, 2016), (Toni, T., 2008), (NuĂ±ez, Prangle, 2015)_" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Old good Gaussian fit\n", "\n", "To illustrate how to use ABC within PyMC3 we are going to start with a very simple example estimating the mean and standard deviation of Gaussian data." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "data = np.random.normal(loc=0, scale=1, size=1000)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Clearly under normal circumstances using a Gaussian likelihood will do the job very well. But that would defeat the purpose of this example, the notebook would end here and everything would be very boring. So, instead of that we are going to define a simulator. A very straightforward simulator for normal data is a pseudo random number generator, in real life our simulator will be most likely something fancier." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def normal_sim(rng, a, b, size=1000):\n", " return rng.normal(a, b, size=size)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Defining an ABC model in PyMC3 is in general, very similar to defining other PyMC3 models. The two important differences are: we need to define a Simulator _distribution_ and we need to use sample_smc with kernel=\"ABC\". The Simulator works as a generic interface to pass the synthetic data generating function (_normal_sim_ in this example), its parameters, the observed data and optionally a distance function and a summary statistics. In the following code we are using the default distance, gaussian_kernel, and the sort summary_statistic. As the name suggests sort sorts the data before computing the distance.\n", "\n", "Finally, SMC-ABC offers the option to store the simulated data. This can he handy as simulators can be expensive to evaluate and we may want to use the simulated data for example for posterior predictive checks." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Initializing SMC sampler...\n", "Sampling 6 chains in 6 jobs\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " 100.00% [100/100 00:00<? Stage: 6 Beta: 1.000]\n", "
\n", " " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " " ] }, { "name": "stderr", "output_type": "stream", "text": [ "Sampling: [s]\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " 100.00% [12000/12000 00:00<00:00]\n", "
\n", " " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "with pm.Model() as example:\n", " a = pm.Normal(\"a\", mu=0, sigma=5)\n", " b = pm.HalfNormal(\"b\", sigma=1)\n", " s = pm.Simulator(\"s\", normal_sim, params=(a, b), sum_stat=\"sort\", epsilon=1, observed=data)\n", "\n", " idata = pm.sample_smc()\n", " idata.extend(pm.sample_posterior_predictive(idata))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Judging by plot_trace the sampler did its job very well, which is not surprising given this is a very simple model. Anyway, it is always reassuring to look at a flat rank plot :-)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAAGbCAYAAAAskpJqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hURRfA4d/spgfSCCn0HkqAUEMVAaVIR8CGXRQV/bAAoqiAIkVBFBuioGJFRapYEEGlg/SOdAhpJIH0ze58f9wkkJBAsunhvM8TyO6dzN47uzt779kzM0prrRFCCCGEEEIIIYQQohwwlfQOCCGEEEIIIYQQQghRWCTYJYQQQgghhBBCCCHKDQl2CSGEEEIIIYQQQohyQ4JdQgghhBBCCCGEEKLckGCXEEIIIYQQQgghhCg3JNglhBBCCCGEEEIIIcoNCXYJIYQQQgghhBBCiHJDgl1CCCGEEEIIIYQQotyQYJcQQgghhBBCCCGEKDck2CWEEEIIIYQQQgghyg0JdgkhhBBCCCGEEEKIckOCXUIIIYQQQgghhBCi3HAo6R0QQoi8OHz4MB999BE7duwgOjoaPz8/OnXqxDPPPIOnp2dJ754QQgghRJkh51VCiPJOgl1CiDIhLCyMmjVrctttt+Hp6cnJkyeZO3cuBw4c4Lvvvivp3RNCCCGEKDPkvEoIUd4prbUu6Z0QQoj8SktLY+fOndxzzz389NNPNG7cuKR3SQghhBCiTJLzKiFEeSOZXUKIMiE1NZX58+ezZMkSzp07R0pKSua248ePy0mZEEIIIUQeyXmVEKK8k2CXEKJMmDVrFt999x1PPfUUjRs3xt3dnfPnzzNq1KgsJ2hCCCGEEOLa5LxKCFHeSbBLCFEmrFy5kkceeYSHHnoo8774+PgS3CMhhBBCiLJJzquEEOWdqaR3QAgh8iI5ORlHR8cs9/3www8ltDdCCCGEEGWXnFcJIco7yewSQpQJnTt35tNPP6VSpUr4+fmxatUqdu/eXdK7JYQQQghR5sh5lRCivJPMLiFEmTBhwgQ6dOjAtGnTePbZZ0lJSWHmzJklvVtCCCGEEGWOnFcJIco7pbXWJb0TQgghhBBCCCGEEEIUBsnsEkIIIYQQQgghhBDlhgS7hBBCCCGEEEIIIUS5IcEuIYQQQgghhBBCCFFuSLBLCCGEEEIIIYQQQpQbEuwSQgghhBBCCCGEEOWGBLuEEEIIIYQQQgghRLkhwS4hhBBCCCGEEEIIUW445LVgTExMUe5HifP09CQuLq6kd6NMkTbLP2mz/JM2yx9pr/yTNss/abOreXt756t8Qc6rpP2Ln7R58ZL2Ln7S5sVP2rz4SZsXP3vbPL/nVTmRzK50JpM0RX5Jm+WftFn+SZvlj7RX/kmb5Z+0WcmS9i9+0ubFS9q7+EmbFz9p8+InbV78SrLN5dkWQgghhBBCCCGEEOWGBLuEEEIIIYQQQgghRLmR5zm7hBDiWuLiNPsPgtkEFSqAnx9U8gGlVEnvmhBCCCGEEEKIG4gEu4QQ+aK1Zt9+WL9Rs307DL9bcVNnxZGjMGaczlLW3R2mTYGgBrBtu6ZePUWVQEVcnGbZCujQHurWUaSlaWw2cHKSwJgQQgghhBBCiIKRYJcQIk8sFs23i2DVL5pTp8FshuAm4OZmbG/UEOZ9pLBaISpKM/9z8PWBunUgKQlefBkCAzQPPwT16mrmzoNaNRV168DBQ/D0M5q3pkPLFgqrVWMySVaYEEIIIYQQQoj8k2CXEOKaLBaNo6PCwQF+/U1TqRLce4+iy03g5AQmEyQmaia+pqlRAzq2VwT4g5cndO+uSEkBT0/No4/Ab6vh9Tc0Af4w5jkIbasBha8v3D4IatcyHnPVL/DtIs3sWVAIq84KIYQQQgghhLiBSLBLCAEYwxPPnoX9B+C/Y5rz52HvPoiKhtq1NV27KGa+CXv3KXbu1KzfCDExkJgIVatArZoQ4K+YOkPTojm8+7ax/kWf/ja63gzPP2vi3ns0k6dojh+HN2fC0f/gudHG3z35+OUsLl9fI2usko9x++RJTbVqYDZLppcQQgghhBBCiGuTYJcQgrnzbPzxJ5w7Z9x2cACtwWoFTw9IiIdduzXffAtNm2o2boJbu0OnjgpHR83p03DXHQofH0WLEGOC+gxPj1JUqWL8npAAa9fBqMfBx0cR4K9ZulzTornG01Ph6WkEs9qFKtqFGr/Hx9t44ilNly4w9jkJdgkhhBBCCCGEuDYJdglxA0pK0mz/1whWAZw6bWRm9e8LmzbDzl1Q2Rcio6B3b1i7Fu6+E06eMjKu2oUaGV0XLmgOHDTK//iTxsdbU6sWNAyCOnWMYYndu4GDg/E4FSoofllhBNHc3BTrN8CbMzUhzeHUKc3/ntZ0u1llmavL3V3x7DOK+vWM2ykpGgcHyfISQgghhBBCCJEzCXYJcQP6YTHMnaf5eqHG30/x+iRjNcWHRmiCGhhlHnkYkhKhSlWo4A5ffQNHjkJs7OV6XFzA0xMCAiA1FS5ehH93GD+gM8sEN9GEtlV06wr+fpeDVB3awxfzFTabZuoMeHUSzH5X8/UXmooVjWGQSim6d738N7Pf1Zw5C2+/dTmIJoQQQgghhBBCZJBglxA3AK01v/8B7m7QsYPi9kFQpzY88RQ0CtLsPwA+PlCtGiQnG8GtaTOMoYw5MZuNebWqVjF+atRQNGoI9etpzpxV/PKb5vfVRmDMajXm5tq2XfP+h9C8mWZAf0XXLuDoqKhTB0Ax9wPNK5M0f/0NT42GaVM0qKsnqG/RQlGtmgS6hBBCCCGEEELkTIJdQpRzZ85o3pxlDFv094MP52osFjibPj/Xxs3G/4lJ4FsJYi5CQiIoBTVqQIN6ULs2eHkprFZj+GJ8vCYiAsLOw4ZNsHylERVTCmrX0oS2hUmvgMUCa/4ER0e4527F6j803y6Cya8bga/bB8GQwcaQRgcHxRuvKbZs1cz/TBMfrxnxOLzyUjJdb758PD1uuRzkOnhQcz4cbu4igS8hhBBCCCGEEAYJdglRTp05a+O9D2D9hssZWuERRuCpYQNjlcW0NHB3h0ZBsHO3EbxqGgw9blXc3AW8vXILImW9Py5Oc/AQHDgIu/doflgM33xnTFR/U2fo3k0R4A+39VIs/EozdAicPg0ff6L58mu4+07NPXcpHB0Vbdso2rQ2MszuukNz+owNi0WTnGzsq8l0+bG/+U5z4BC0bwfOzhLwEkIIIYQQQgghwS4hypXYWM1vv8OyFZoTJy/f36ED9O2tCGqg8fNTLFup2fOWETy6eBF274XbesPA/oq6dfIfNPL0VIS2hdC2AIrERCOT7O/1mnV/wc+rNAH+0LMHfPQ+VKuqcHZWfPyJjS++hE/mw2dfaNqFanr3UoQ0M+qsWxdenZTE+g1GkM7NDaa/QeYE9i++oIiJMQJdWmdkl0nQSwghhBBCCCFuZBLsEqIcOHZM89U3mj/+NLK1TCYjOPTAfXDsONw33Fgtcd3fcFMnWL7c+Ds3N3j4QUXf24yhhIXFzU3RuRN07qR4brTmnw3w66+aL7+CzxdCs6aawQON/bulu2LxT5pffoN/1sM/642gVb26mhYh8PCDLnz1TTImEwweeDmYpbXG2VkREGA85kcfa0xmePRhCXgJIYQQQgghxI1Mgl1ClGHHjmvmztOs3wCurtC8GWz/1wh0LZgHNWoYKxpqrTl1WrNrF/z6m6Z6dRg/TtHjFmOS+KLk7Kzo3hW6d1VcuKD5bTUsXa6Z+Jqmkg/076e5/17F/54yhiV+9oXxdzYNy1aAu1sKn86FCa8aK0KCjUYNFUuWaSa9Ah4eRlZXQiKYTUV6KEIIIYQQQgghygAJdglRBsXEaj6dr1m2wpgX69FHFAMHQFQUvP+hpn49cHOHl16xEdIcvv4GIqPAyQlGPQ4D+ivM5uLPfvLxUdw5DIYNMYJyP/6k+XwhfLFQ07kzDB6oWLhA88Z02LUbutwEj42oSI3q8Xz8oWbQUGN4Zp06xiqPa9dp2oWCn5/i2f8ZE+QrZQyjLMxMNSGEEEIIIYQQZYcEu4QoQ7TWrPkTZs02MpmGDoF+fWDGTE2FCjB4oImZM4wgz8HDNrZsgXV/GX8bEgJvTgVX15JPfzKZjEno27RWnD+vWbJMs2KlEbyqXQsGDoC2beCzL2Dvvku8/CK0bqVY/hPEx0PFirBuHcyYCaDxraS5527o01uRmqoZOUozoB/cdYcEvIQQQgghhBDiRiPBLiHKiIsXNTNmataug+Am8OI4RY0aikU/2Ni7F2rWMDK+Fn6p0RoWLzHm7nJwgDHPQp/bSj7IlZOAAMXIRxUP3q9ZsxYWL9G8/Y4xn9jNN8HhI4pnnrdx/72aB+5TeHsrzp7T7DtgZKo1agi798A7c4zVHW+9xbivWdOSPjIhhBBCCCGEECVBgl1ClAEHD2kmvKKJvgBPjFTcMRQOHdLExsLQ2xWhbTXVqynemaP58SdQwID+xgTwiYlGUKy0c3ZW9O4JvXsqDhzULP5J88caSLXY8K1kZHnt2GnM01W1imL+x/DqZM2OndC7J/TrCz+vglW/gMUCycmae+4C30pGQE0IIYQQQgghxI2hdKZ6CCEyrVipeXyUsULhh3MUd9+pOHRYM3IUTHtTk5AA27bBiJFGoKtiBfDygkdHKHx9TWUi0JVdo4aKl8abWPy94tnRbjg6Gvfv3gN3Dtes/sOGj4/i7bcU99wFq36FFT/DvcMVViu0bAF79sBLL2vuuEfz7w5dsgckhBBCCCGEEKLYSGaXEKWU1pqPP9Es/ApC28KrExQeHor/jmnGjjfmrRo8AB55THPmLHh7gY8PxMbCqCcUFSuU9BEUnJeX4uEHXRnQL4mNm+GrbzR79sDE1+DzhTaefxZGPqpo3BiqVjEyvl59WRPaBhwcjKDg1m1Qp7Zm1mzNPXcr/P3KXvBPCCGEEEIIIUTeSWaXEKWQxaJ5/Q0j0DVwAMyYqqhYEWbPsfH4KI2DA9wxBF6bCufCoGlTSEg05uh6/13FsCEKpcpPUMdsVnTqoPhwjonP50O9unD8BDz5NNz3oObSJahR3Sj79z/w6mSIjdV89DFcvAhH/1P8/Avs3iUZXkIIIYQQQghR3kmwS4hSJjVV89Irml9/N7KWnhutMJsVJ09pliyFNAskxMPHn0KVQFjwCVTygabBsGCeomlw+Qly5aRuHROffWpiwovGBPUnT8G0GZphd2u++c5G40awazfc/zB4ekKzZsZKjh3awbsfQGKi5rMvNHv2SuBLCCGEEEIIIcojGcYoRCmSkmIEujZvgXHPK/r1VWitiY62MXY8mM2ABqsNeveC++6B6tVNTBivcXQ0MqBuFL16mGjaRPPKJM2hw2A2wfsfgoeHkQ13+DD8sx5iYqBRQ02zpuDuDjabZuXP8Ml86NdX88RjiooVb5x2E0IIIYQQQojyTjK7hCglUlI04ycYga4XxhqBLoAP52ruuAfOnYOUFGjbBl4aDxs3whvTjbm9XFzUDRXoylC1quLD9xTDhkB4BNSsCQ3qw7ffwalT0L8vJKcY85sdPAynz4Crq2LMczB4oLF64/0PywT2QgghhBBCCFGeSLBLiFLAYjECXVu3wYvjFH16G4Erq9XGL79BcrIxH9ddd0BIc5j8Gnh7w0svlK+5uezh5KR4epSJaVMUFy7AgYPwyEMQGAjLVoA1DY4dg3HPG5lxq37RTHzNCHzNfV/h4gz/e1bzwVwbqakS9BJCCCGEEEKIsk6CXUKUMKvVmIx+y1YYP1bRu5cRvDpw0Madw+HCBahTG77+AqKjYc4H0LkzzP1AUa3ajR3oulKnjooFnyjq1DaGKNapA69NhFQLjPqf5rUpEB8P094EhTGvV0AAzJ+nGDgAvv4GHntCc+aMBLyEEEIIIYQQoiyTYJcQJUhrzTtzNH/8CaOeUNyWntE1d56NESMhLAyG3g6fz1cEBCgio4xJ61+bqHBzk0BXdgH+ijmzFcPvhqXL4LOFRsDr/nvhr3+MlSsH9AdlgtRU+OAjzfc/akaOgDenKSIi4JHHNIePSMBLCCGEEEIIIcoqCXYJUYIWfA6Ll8Dwu+HOYYqEBBvjJ9hY+JWx/bER0LmTMTzPwUExe6Zi+N0ydPFaHBwUIx81MXOGIjoaHn8SKlZULJgHtWsZQbBmTY0g4pGjMHce3HEPBARoPp2n6NYNatUs6aMQQgghhBBCCGEvCXYJUUJW/aKZ/5mmXx94bITi2DHN0Dvh73+MidVvHwQ2G4x+TvPJfCPT6EachN5eoW0VCxco2rWD9z7QzJwNL46Dxx9TbNgIa9YawcTXJhqT2k96HY4fh7HPmXByUsTGaia9biM6WrK8hBBCCCGEEKIskWCXECVgz17NjJmaNq3h2dHw01LNIyM1Fy8ZWUdPj1LEXYR5n8LNXYzbIv+8vRVTJismvKg4ehQeHGGszDjvI/DyhDEvwLHjMOJhSEiAMS9o7r7PxrHjNv47Blu3QmRUSR+FEEIIIYQQQoj8cCjpHRDiRnM+XPPiy5qAABg3Bh593BhOF9rWWCEwNtaYKP34CXhipOKuO5BhiwWglKJXD2gRAtNmaGa8pWkRAq9MgO9/MIaS7t0HnTrA8hVw6hQ88DDcfafm+2/B1dVo+0OHNUEN5HkQQgghhBBCiNJOMruEKEaJiZrxL2ksqfD0E/DcGDj6nzGXVO1acO4cDBxgZB/NnKG4+06Zn6uw+PspZr2pGD9OcfQ/GPEYVKmiGPu8sTLjn2th0kR4713ocxukpIDJZLT92nU2Hn5U88l8GzabDGsUQgghhBBCiNJMgl1CFBObTfPiy/H8d8wIprz0Kly6BAP7Q/QF+HYR9OsDw4aYmDNb0aa1BLkKm1KKPr0VX32u6NwJPv5E8+NiGPMcuLjASy/DmdOKSj7g6Ah33KP5/kcb33wH3bvCZ1/A5Cma1FQJeAkhhBBCCCFEaSXBLiGKyYLPNb+vTiWkOXz3vTH5/IfvQcsWEB9vlPH2Nv6XbK6i5eOjmPSqiRlTFfEJMGUqBDUw5kub9qZm9R8QFQ2NG4FHRWN46T8b4KbOsPoPeG6s5tIlCXgJIYQQQgghRGkkwS4hisGatZoFn0Plyop/d0DvXvDWdHBzg6kzjMBX9+7w4P0S5CpOHdobWV4P3GesgnnwEDRvBmfOwsWL8NILig7tFQs+gdq14a+/oU5t2LMXnnhKEx4hAS8hhBBCCCGEKG1kgnohitjhI5rXpmjMZrgQrZkw3giyPPyoJiYWkpNhQH94/hmZn6skuLgoHnlI0buX5r33NX+vBx8f2LIVHhmpsVqhVk04eBDuvhN+Wgp3DIWly2HkE5o3p0O9uvK8CSGEEEIIIURpIZldQhSh6GjNM89p0tLA2Rlq1zZzU2eFq6uR1ZWcDH1vgzHPmiTQVcKqVlFMnWJi5gyFR0Uj2+7cOYiMgDatYcpriidGmvjuK8XIRxUfzFGkWeHJpzT79kuGlxBCCCGEEEKUFhLsEqKIJCfbeOwJTdxFqFULvvoCFn3jybkwDWjatIa+feCFsfI2LE1C2yo++1TxzNNGUNKSBu++B+HnNX+s0ZwL00x7U+PioomPB2UCpSTYJYQQQgghhBClhVxlC1EELGk2HhoB58PBwQFenwSVfU28+14iD42A9z+EUU+YGPucZHOVRg4OitsHKxZ9rRjY37jv3fdh0uuajz+BTZtAa8UrLym0hnEvws5dNvbuk6CXEEIIIYQQQpQ0CXYJUcgSEjT3PQinTkPDIOjdE6oEKrZs1Xz1dTIALUKMsiaTBLtKMw8PxfPPmvh8PgQGGkMb9x+Ax0ZAgL+m682K92ZDhQrw9DPGpPVnzkjASwghhBBCCCFKkkxQL0Qhio7WPD5Kcy4MGjWCjz8wJp3/c62NyVOgZk0TqRYbXl4S5CpL6tQ28f038O57Nhb9AG9Mh3fmQNNmNs6HwYyp8NYsqFgBqlWT51YIUTpYrZpduyH6AlTyMVabNZuljxJCCCFE+SfBLiEKyZkzmqee0URGGrfvHApKKaKjbUx8DQID4MvPPUlJiZWLjTLq6VEmOnW0MXY8JCQawxlr1QRXV5j1piJjjYGly2xoDQMHSPKsEKJkrPtLM3vO5c8kgMqVYfRT0OUm+QwSQhQPm4bjNsUlDRUV1DZpCn1gg82K+ex2VEIk2r0y1qqtwGQu5AcRQpQ1EuwSohAcPKR5bqzm0iXw8IBhQ+CmzsYnuYuLolpVjZcXODsr0tLkIqMsa9nCxMIFxvN9+owxXPXOe2DwIM0tXaFmTZg9BywWSLXYGDZEAl5CiOK17i/NS69cPaQ6MhJeekUzZbIEvETpUCzZhxIIKTF7rYplqWbiuPyceqLp72Ql2Fw40z6Yj/yG859TMcWfz7zPViGAlK7jsdbvUSiPUdZpq42ELRGkRSTh4OeKe1s/lFnOT0X5J8EuIQpo6zbNiy9rUlPBpOCt6YrGjRRff6uJj7fRqqXizFljzieTfK6UC4GBik/mwuQpmn/WQ0oKfP0NfLcIPnxPM20KjB1vrOKYmmpj+N3yxAshiofVamR0Xcs772k6dZQhjcWhWLJayqhrZR8OHFA4jyGBkJKz16pYmHp1UDEOWJhq5t5CCHiZj/yGy/LRQNZ6VHw4LstHk9xv9g3/PMetOknYxK1YwhIz73MMdCNwYhs8e9cswT0ToujJFZgQBfDHn5oxL2gczGC1Qtu20LiRYvESzQcfaZYsgxdf1tSqCZNeUTg4yBlueeHmpnjjNcXwu0FrqF4N3Nzgiafg4CHFB3PAyQk++hjmf2Yr6d0VQtwgdu0mS/AgJxERRrmCsqbZ2LsnhvWbo9i7JwZrWtnq66w2KzvD1rPmv5/YGbYeq81aqPXvtSqmJTvwcaoD31iM/6clO7DXKucCGdmH2V+rGdmHv69OKfBjZARC1BWBLrgcCDEf+a3AjyFyZtOwLDPQlf31btxelmrGVpBYl82K859TAZ3DIxgVO6+dCoX8vi5L4lad5NTIdVkCXQCW84mcGrmOuFUnS2jPhCgektklhJ1W/aqZOl1TJRDOnIXevWDsc4pVv2pmzdbUqwunz4C7O0yfqnB3l5Pb8sZkUox8VFG7lmb6m5pKvuDgAPM+1fz8C7w1Dca+CJ99Aa1aapo3k9eAEKJoRV8o3HK52bw1il/8PEis55d5n9vZBHpFXCS0jW/BKi8Gf59YyfubJhCVGJZ5n69bIE+2e53OtfoUuP7iyGqBsrkIQV6yD6fNSOS7r7X9x3KdQIhG4bx2Kol1u5f6IY1lcQjacZvKMnTxaoq49HJ17XwfmM9uz5Kxd/UjaNSl85jPbsdava1dj1GWaauNsIlbsye9pW8EFIRN3IpHj+ql/vVUHGxWK5H7NpN0IRxXH38qNwnFZC7dfUNxK4t9kQS7hLDDylWaaTM0lSsbga6bOsP4sYq//oap0zUtW8CFC2A2w5vTFAH+pfvEUxRMzx6KqlVh/EuX5207fx7Gvwyjn4Zvv4Nx4zXT39A0b166PxSEEGVbJZ/CLZeTzVujWNw44Kr7E33dWOzrBlvPF0rAq6guPv4+sZJJax4h+1VgVOJ5Jq15hFe7fVKggNf1s1o0y1LNNHZJK9CQxrK6CEFesg/Ph9vYtVvRsoV9j1FeAiFldQjapTzGr/JaLicq4TovonyWK28StkRcldGVhQZLWCIJWyKo0P7q/jy/yvKQ7VPrf2b7Ry+TGHX5yw8330BajXyNGh1vK8E9Kz3Kal8kV11C5NOyFUZGV3AwREVBhQowYbyR5WOzadzcjCEi58Jg+huKoAZlpKcXBRLcRPHJx4o6deHSJbhjKPj4wLQZ0LIFOLvAU8/AjLdsaF04k7IKIUR2zZsZAY9r8fMzytnDmmbjFz8P40b2K5n0279W9ijwkMZT639m6QNtWT1uCOunP8nqcUNY+kBbTq3/uUD1Wm1W3t80gdzTHeCDzS8XaEjj5ayW3D7/je3HbfafH1xvGOC6v0rv50xxZB+Wh0BIcQ1ByxjO+8uB7wptOG/FPL6081ouJ9r9Oh1dPstdi03Df1bFzjTFf1ZVsOGXxSQtIqlQy11LWR6yfWr9z/z9+ogsgS6AxKjz/P36iAJ/5pQHZXk4rAS7hMiHJUs1M97StG5lnFB6ecH8j8lcYbFpsDF/07kwmDxR0SKk9HfyovD4+yk+eFfR9Wb4+luIjTWGNS5eAv7+4OgIy1bA9Dc1aWll4ExJCFHmmM2K0U9d+7Pnf6OU3cPDDhyII9HP/epAVwaTIsHfnQMH4uyqH4r24mNP+KYsQxevpolMOMee8E12P0ZRZ7XkdRECq7V0fs4UR/bhlQEOmzJxuEoo2+r15XCVUGzKlGO50uS6Q9AwhqBpa8GCyn+fWMk9i1rz/Krbeenn+3h+1e3cs6g1f59YWaB6a5s0nmhyPgAAY3ttk/2vUWvVVtgqBOQwUDXjERS2igHG6psFUCyBHJsV8+ktOBxcifn0lkKZZ8zBz7VQy+UmY8h29h4/Y8h2aQ542axWtn/0Mtd6o22f+wo2a+mf962o5qC8si/S2Ih3+48Yj53Eu/2H1kb/Uxh9UVGRYYxC5NGPizVvv6upWwcOHTZW4PvgXUVsHDw0QjNuDIS2VTRqqOndU9GpQ+nt3EXRcXFRTHoF6tSGT+ZrvDyhbRv4cx0E+EP7drDoB7h4SfPqBHB2lteJEKJwdblJMWUyVw1x8/MzAl0FGeIWl5i3E+i8lsvu+hcfiu1zX6Fau552DWm8kBhRqOVyUtRZLflZhMDeYYBFKSP7MDISlLZRLzkCT2sScWZXjrr4oZWJAH8TzZsVPBCyq3Jzfug0gdgKgZnbvOLDGPLP6zSP2lXgQEhRKY4haMZw3ocz52/KEJUQxqQ1D/Nqt0/tHs5rUtDfyZo+b122B0h/b/d3shZsmJvJTErX8bgsH00asMvBQrTSVNKK5mmOmIGUm8cXaE624lpRsihWDHVv64djoBuW84k5d6cKHAPccG/rl8PGvCmuIdtFJXLf5qu+VMlKkxh5jsh9m/Fv1qHY9iu/inIOyoy+KK7iXs4FLsfieDms6WjxpEpYPzzDggttOGxhk2CXEHmw6HvNu+9rutwEUZHGMLVXJ4CDIzw1WuPkZMzj1aG94u23FEqVwh5dFBulFA/cB7VrwWtvaHbuhiaNYPde+OU3aN0K/vobFn6leeQhea0IIQpfl5sUnTpC/8GauDjw9ITvv7E/oyuDp1veLhzzWi67or748HG7fGGnNPhHgmsyJLlAeGXQ6upy+ZWR1WJcEuTU3hrP9HL2KK5FCAAj4+TsdlRCJNq9shEcKuCE7kb2IXz/3EmGRm3ByXkfFodLOKZVJDWiCd/7tuWBsY0xm68R7Lkek5ltvd/h80pXR/ti3f35pOcc7o/eQeNCmJy+KCZtLuohaFablQ/+GXN1HAoyYhR8sH4MHWr0wmxnGwWbNfc6WVmWLevHEyPQVSgLNNTvwW/t7+H9/R8SodIy7/fTDjzZ+HE6FiBYlBnI0cBV5/UKdMEDObZ9K3FZPprs0aiMFUOT+822O+ClzCYCJ7bh1Mh1mc/plbsPEDixTYFeq8WxEEGGNIuFvb+uI+HcBdyr+BDcswsOjo4FqjPpQnihlrumIuhL4fIclApFDceOuDr5k5QazunETYUyB2VaRBJxFfdysvqXV22zOMRxsvqX1Dw9nLSIzgU5jCIjwS4hruOb7zTvf6jp3Alq1YR1f8GIhyEoSPHk0xoXF3B2ht17wGbTKCWjg4Why02KKoHwwgTN3v3GuZK2wY6dUK0aDL29pPdQCFGeKWxUNW2ksjkCJ5MfivZAwU6uGzXyxO1sAom+bjkPZbRp3CMTadTI0676E6LydlGR13LZNfVvh69bIO6HzxO6E9yTLh9DgqtmcwgkBgXS1L+dXfVD0We1FMcwQCi6jBOAkIRTmBI/IKzu1ZkCd4T1o0XCOKCS3fXbNCzxbZlzoEKZQGuW+LakoS5YxkncqpOcnbyNs1UrklTZDdfIRKqevUTVV1oXaNJmk69zoZbLbk/YBiJTL4DKPegbmXKBPWEbCKlq/0Wsx6aVNJz7KttmrMbq6Ys5LoqGY2/B47FJUAgTf/99YiWTDrxnHMQVIpSVVw+8x6uBIXZf6GcGcnKdeq+AgRybFevPxvyBRbViqGfvmtT4qMvVE4sHFM7E4sWxEAHAps8XY30rDI+4ihgzRp5js+fHmJ8PpN39g+2u19XHv1DL5aao+tKMOSjru/bBu/MbWCtVBaACEBB9lpi/X+SDzS8XKGht9nXiXOBy40YugfFzActp7vs/u4+jKMlVuRDX8OXXRqCrWVPYug0+Xwj9+sKQwTD6OePD6d23jflRxjwLrq7ylhJZ1a+v+OQjRaOGYLVCj1uNoOnZs7B5C8TG2Xh1ko2oqNI5t4oQomzKmOC9S/IwbnUaRZfkYYUywbvZwUSviIvGjeyzNKff7hl5EbODfZ+HZ2PyllGV13LZmU1mHnQeTNeN4JYtKcYtCbpuhAecBtl9YZAhI6sle8jPEwo89OnKRQiUtlE/6Tyt449TP+k8Kn0OlYIsQgDGxZnL8tGobCsaZmScmI/8Znfd2mpj/5RPOFX9SywOWWf6sTjEcar6l2yd8E6B5oC5HKjIJVKhCr5IQNyqk/zz4wm+/6ovqxf2Yf2srqxe2Ifvv+rLPz+eKNCkzcdqHiPGIxady5xXGk2MRwzHah6zq/7Ys8acdDXPwNCVit7rTNy82UTvdSaGrlTUPJO1nD0y5t5LijyLKS0VAFNaKkmR5wpl4u+iXmziki1vr7+8lsvOfHY7XAy7xjIWGlP6iqEF4dm7JkEbBmP2MQKjZh9ngjYMLpQV9IpjIYJNny/G7eVLVIyrkLXOuAq4vXyJTZ8vtrvuyk1CcfMN5FqLibhVrkLlJqF2P0ZGX2qLD2O7g4XfHFPZ7mDBFn++wH3pnvBNeOtWeAxYgNUnMMs2q3cgHgMW4GVrWbA5KF2OG19I5N5EWJziuORy3O7HKEpyZS5ELj5fqPnoY03PHkaAKyXZmHvpudEKd3cTvXqAu7sxCXm7UMWtt8jbSeTM21vxzizFbb3hx58gPsH45n/yFLjvQfhnAzzxtOZcmAS8hBAFV9SrS4W28WXw/vO4RWUdZuYemcjg/ecJbeNrd91JFdpgtnhda15rzBYvkiq0sat+m9VK4uIlKBSYzMQ36UBMp0HEN+kAJjMKReJPSwtlQmKPTSsJeqwF5rgoAMxxUQQ91gKPTQWb/DtjEYKQhFNMObWEZ8NW83DEep4NW82UU0sISThVoEUIsFlx/nMqoLHaYOu5Kqw52oCt56pgTQ9oOq+davck2vGbwjjt8oNxI6dMAeCU4/fEb7rWcNZrK+qME221sfGPMP56pzuJAW5ZtiX6u/HXu93Z+EeY3QG7CymR/NRrmfFY2d4MGbd/6rWcCyn2rSZZSZuoeQa6blS5BH2NgFclbd+5bXFM/F3Ui014Rh8q1HLZ6UuX5wW0WuHwQR92bPfj8EEfrmyWK8vZy4YiTRkB/DRlxnbNoYd5V4M00pLOZ05Unp3WNtISw6hBWo7bryfNYsH6lvEcq2z7nHE7bWYYaRaLXfWbzGZajXwts8asjNutHpts1/yQQGZfutYxhcGelxhXpzlvN+7JuDrNGex5kbWOqQXqS6Piw/Hu/Eb67mZ7r5pMoMG70xSi4u0fhnloT976mLyWK25ydS5EDuZ/ppn3qbHq4pDBMGs21G8AY5+Dg4dg/QbND4uNVRcjIiVAIa7PyUkxfqziqScV4eFGAkSVKnDhAthscDEOnnhKc/yEvJ6EEPYrrtWlQtv4MqGqA84xyQA4xyTzUjWHAgW6ACqHR1MtrK+xt8qUJRil00/mq4X1pXJ4tF31Z8wJFhfah4Mf/cux15Zy+tmPOfbaUg5+9C9xoX0y5wQriKLOaglJOMWj4X/hZc0acPSyJvJo+F+EJJyyu27z2e2Y4s/z1/E6/PHZ46Qtuh/XFbeTtuh+/vjscf46XrtAGScRuzblKVMgYpf92QhFnXFyaUsEG0cFG8PncrzI1Gx8MphLW+wLVPi4+bGn8V4WDFtIrEfW7LdYj1gWDFvInsZ77Z5brol/KO13GgefWxCh/U5FE3/7MlryM/eevYp6sYm6sf/hFR9mzD+RE23D+9I56sb+Z1f9R84b6Zm7d/ny+W82/jx9nC0XjvDn6eN8/puN3bt8s5Sz17q/NEPvTCE+PgGA+PgEht6Zwrq/Cn6+uS9iEye3jQNULpm+ipPbX2BfhH3v5b2/rsMjriIKhdWkOd7Zxt4hZo53tmE1aRQKz9iK7P11nd3HUKPjbbS67Q0crVnzcB2tnrS67Q1qFGC4rfnsdtalnGJ6g674D9hBUPdl1Okwj6Duy/AfsIPpDW5mXfIpu/vShItOxtDF3KbQMZmw+lYj4aKT3ceQqPPWx+S1XHGTObuEuILWmk8XaD77Atq1hU1b4OBB8PSASS/DS6/AiROalFRoGASTX4UqVSRmLPJGKcUdQ6FmDXh5oiYx4fKKVE5ORtBr1NOa2bOgfj2ZuF4IkX/FubqU2cGEOf0bdbPFhtmhYJMFA9SsmMTZS8E41ZvOrrG9sVS+PDTDMTKM5jNW4blfU7WifRNzJ10IJy60DyfHzr9qm8UnkJNj51NzxkMFmpDYZrWy4Z2X0VpfPV0UGq0VG96xf0XJjKXgc/qUUOn/hE3cikeP6nZNPq0SIll3vA6OS4eR/RmteNETlg5j3YBFhCbY902+xfFSoZbLSVEvEnAs1Uayv3fuBUwmkgO8OXbqIiF21N/YNxSVFMjuRvvY2+gAT635ADwqwcVo5nQbjw0bpqQqNPa1MxgVC65JuZ9nKBSuSUY5e2YrKo6Jv/Ma6LM3IKjcKzP0n9eY1/N9I3Bz5eRuNg1KMWT966jW99hV/zFbKxK31WT3hd1XTaVoMV9iY/gl4rc1J7xZK+ra9QhGoGvRj2/g2ONDrPvHQooXVqc4HHvUY9GPjwMvFmh13guJEVT/7QQ3ffcH219qR2Lg5aGGbucTaPXGJizeJ7hQ176AY8K5C3gAB/srdo29LcvnwZb0z4OGyzQJ5+xfjSNu1UlS31QEMYYDQW9gdUjAnOZO0KExpB5UxNU7afeQT1t8OB816Eqdzguu2uboFkidzgv4iAdpa2fmlatDHuccy2O5nAQ0C+XMD9642y5cFRgHI9M0weRDw2b2D/UsSnKVLkQ6rTUff2IEugb2hxdfSJ8TQ8GU1+D1qXD4CKSkGqvszXlHAl3CPu1CjXm8KlSEqChjSpGEBHB0gEYNwbdgiRFCiBtYca4uZbNa0ekroGmVVihD/5wC3Dh1a022TX8QS6Wsy5hbKgWwbfqDnLq1Jk7Zho7llbOPP+cenmLcyGXYx7mHXse5ABMSn9+9CeulsGtMF6WxXjrH+d32ZTtkLAWfKw2WsEQS7Mwqsjh7k/xnz8zK4t3+I8ZjJ/Fu/5GRHZj8Z08sztcI9lyDV+t6hVouJxmLBKC5aoiV1jbQBVskIJLz1y+Uj3LZ7d1rJmXza3hV60PwgB2s/2QI62d1Zf0nQwgesAOvan1I2TyZvXvtG16VFJu3QGVey2Xn5JW3bKS8lstJxmIToFAaAiKg9injf2O+ekVl9yp2LzZhrdqKan/H0fmpP3ALT8iyze18Ap2f+oNqf8cZq+rZwcfDxr6I9HndchnOeyDiBD4e9g2FtVo1K35+g0PN5hBtyjqMMNqUxqFmc1jx8xtYrfZnePk4V2bQL/2p8fsJBnZbhPMF40sI5wtJDOy+iBq/n2DQL/3wcbbveXav4sPB/optMx7A4pu1T7ZU8mfbjAc42F/hXsW+1Ti01caJCX8DGhNmTNp4P5m0GRPGAiMnXv7b7uHI21Mi8GhlDDPMvoBZxm2PVlPYnmJvBmjePgfzWi4nTZvBlhbG8ec2pHpLC03TAswRWZQks0sIjEDXh3M1X39rZN0MGggvvARxcTBjKsyYCYcOgYMDtGpprL7o5CiZN8J+NWsqPv4QJryi+XcHeHlBeAQ4OIK3lyIlRXP4CDQNlteZEOVRQkJCrtvMZjMuLi65lnVycsq8z2Qy4erqmrlNO1ckJf3iRZtMJAa1xeLth2NMBO6HtuCcvmqZq1dlEhMT0TrnCx2lFG5XnCBnL3tm06/s+OQ1kiYtIS3JgTRTPEsf6EWrka9RuWVXbNeYtNnd3T3z96SkpCxlbY3d2TimGZZEY3JDR7fLZdNSU9BpaWx6vhmdqzhc1S5X1pucnIw1h+BbVI1mJFqdcLjiO2prSgo26+WLQYu7N1EezfBIr//KdkhJSSEtLff5Z1xdXTm0y7hwSbNprBosiYlYXBMgMTHzuQE4sOM8VVoYv6empmK5xrwzLi4umNOzwBLPXSRJpwCgsZHodhKL+RKO1oq4JdbEGWfMykRaRBIWi4XU1NRc63V2dsbBwbgcyCi7a2skjnGuRFTYSVjAqszVEh1M4JLmRZWwfrjHNWLj1kia++X8OnZycsLR0cgLS0tLIyUlJXObe91mKFdfki9FggIHBeb0qJNNayxWcPPwx71us6ueY0dHR5ycjCE5VquV5OTkXI8t4txq/ju+nOot38DRNZC0ZONCPDXhLGd3TiKsfj9q1+h1Vb02m42kpNwzBx0cHHC3HgVC0VqTlpR74NEp+QDQEjDONRMTcy975fs++gJU9O9KjVa3Atp4P2TyoGabj7CscyD6gvF6ulZ/kr2PSEhIQLt6ZnktZlAKnK6MALp55lr3tfqIE+6JxDjZcE0yssQs2dozxWYjwcUo55lD/dfqI670cPMJfPv9KNrucoDa7Uis6ItDWDhs2sK2plaG3/0SyUmXXyN56SMyuDq7cGjNTdS4cAL/1cdYvHowKT6uOF9Iouct36NsNnb6hBIcn4h7xQqo9Oh2XvoIk8mE95FfSTHHcq04is0hFu8jv0LbfvnqI1JTU9m8JYHj1T/AmmoMtT3bvDLn3StjTXDEGACoOV3nQ7Zu+981zzVz6iMyBBwKIDXOlWRSwQoqMRV8XDGn2rBZ07CQhkucGwGHAkjwvvpzLLc+IkON9i35pn48NosFk5Mxwb7NasWakv6c2mxse+omuvtWzHydXq+PuPLzM2lrFKZIG6CwaRspVo3FpLFZdWYfSziErz2GT+ca+eojnJ2dWW+pj6NblWv2EWaHyqy31Kcl+esjAOr7VUedOUaqV2Xjy5orKJMZBycnnGLDCandMN99RIbd5zdxrOoF0hS02a1wT77cRyS4woYmNk5ViWb7qXU0C8gaWL7eecS1yiYlJeHtbd8XKleSYJe44Wmtee8DzXffQ++esHEzTHoNTp6Eia/Cwq+MQJdvJZg+VRHUQJGWpu2f+FWIdB4VFbPehPc+1PzwIziYjVUanxtro0F9+PpbeGUCdO8qrzUhypvq1avnuu3WW2/lu+++y7wdFBSU6wlwx44dWb58eebtHvc8QnTsFRcNWy7PZVK5STD/6x5ElZ0/E+Btpln79pw+fTrHeoOCgti4cWPm7e7du3PoUA4TMf/aggrVanDfz79nToD/YXQA+4/mvDJTpUqVOHLkSObtYcOGsX79+hzLOri68eDRyxloq0fcw+k1xspV7+dQ/sKFy0NZRo4cybJly3KsF+CBI+czA2l/j3uaI99/nWX7Z1f8fvjwYXx8jMyBCRMm8Omnn+Za786dOzPnLllxJo0/wqzQrkWOZad2TaF7+u+zZs1ixowZuda7evVqWrY0giZfbFjEGwmzLm/Mdg0zxec2OqX2wMHXmc8//5yxY8fmWu+3335Ljx49APj+++8ZNWpU1nqvSAC8u2sw7ZKOcbL6l5w+3IEZI9fkWu97773H3XffDcCaNWu48847cy07tKYDNwUYlyT/XbTx7kELcApq1bqq7MSJE3n66acB2LVrF7fcckuu9da5zROvbknEnV5FzcbLWNzn1izb13H59TFq1CgmT54MwJkzZwgJCcm13ocffpgxXargGHWWi9qRL0NyH2QW26kZXXoaw9wSExOv+b7v378/n332GQDePrDx0+pszOWlVr1bD7rO/AHvC0bwIz99REhICNHROc95V8NdMSbYGa0VDh6BDBjxTMH7CKDioD7cufUgYGSDvLvfwqkEDaFXvy7y00e4ODsz4bG+nJ49BYtvVX6593ZOr0nv8/6C5e+PyFI+P33E/u+3YLpgvC7fTvqWX0Kfy9w2N+OXBKDWSxw+fBjf9LT8vPQRNWrUICks7HIfkYsXmzqRFGYMS89PH/HRRx8xceLELNuf4MnM33ve8zkWx6VEnVnBwi+e5ptvluRa7zX7iGxu+9ObqvfeBcDf1j1MTP7M2DD06rL56SM6TJlJkwceBeD85g2sHJp1Hq15V/yenz7i/h6DeYibADhOBP/blZHJGAmMu1xwaP77iDfffJM0FUjyhSi+bFYn17L1h95N1RH/A/LXRwDUrl0r17LVu/Wg1xffE7L1LxwGDqZWrYL1EbuA5UANNzNjmjpisrryQ58E9rxhITUG+rx09ZOcnz6ievXq7Nq1K/N23759+ffff3M9vrySMVjihqa15p05RqDrzmEwbgwEN4Fjx+HFFxShbRTnz0Ob1uDpCRkBZwcHCT6IwuHgoBj9lInnn1GkpZ/vbN4Cly5B02CY9JpmxUqZtF4IkVe59xfa7MjJsfOpPHAQ5iT75zjJzpwQh++yD9Mf25gT7EYW0LQ1Lk7X/z7Zt36wXfW7ZJuwPLtwv99JqLwFj6o5BynsFX7HWA7O/Ze4dn2I8bJvQuWcxDftzPk7xhDZbyTOXoU3jj/Rcomm+4N5+e1x1Pkx52CJvfybtqP2FxNyn2Q/nau3fcO3PPOQ1e3sp/JULj/SvPzQ2qjzH8vEQqvXlHgRv+9m4LvsQxJc4WKF6/9NXlhtVk6OnY+lUuD1C+fTiaN7C73OK7lXrVKo5fLD7FyJOp0W4FWtL1oV3mdBpY3bqD3/B6ovyj2IWJqkOBtZaqdurcma+b0Kvf6gCnmbbS2v5fLDZEmm36LH6X1gDlaLfath5iTFx59T97zBsTufQZeBy2Glc8slyyYmJqao96VEeXt7l/tjLGxlvc1sNs2sdzRLloKjIzzzPzhwEJavgJYtoG4dGNBf4e8HZ87CW7M0r09SVK5s/zu7rLdZSbiR2mzjZs2LEzQZWeq1aoG/nxH8GvWE4s5h13/t3UjtVVikzfJP2uxq+U23P3PmTK7brjeM8cr2zz78IPHQX0xxqUmiu3+Oc4SYXZxxSwhjUvIJEioF53sYY8Tezfz5ctYJmRXgdEW2c6pNc/Pkr/ALznnC2msNUTpuVcy3XA4UZRnGmJyMTl+i/SHHNGqbs+57XoYo/btL81NlKw5VvFEmY8hPlmGM2gYXUhgUZaZlc+OY3Nzc8PHxISYmJm9DlE5vZc3Hd3BqWzJWnXW1u4w5TgJDnOn1+LeYarcH8jeMMW3XT3z9wv+40LI7Yfe9isX38sWwY9Q5qn/1OpV3/M5d098jpX6vfA9jXL/4H/Yf/JZTz3xoFEp/HZmdnDGZTKCg2rQHCKo/jI6DO+VYb16GKBmPmcprCUk4+NTEdukcr3lUwGq15drH5HUY47rjy/nl04955Mf7Adhf/w0SzRdxtHjQ4KiRobNw8DfcNuIxutTul+9hjM6ODoRPCuUHQjh194Rsz8FZAr+YzAB2UWXCPzi7Gu+j/AxR2pmm+CIu5zaD9CFKLi7c5ZhGiIPO9xClnbs0Y17Q1FS/0cHxdc58sARLpUCcYsKp9eQg1lsmctx2GzOmJtE8l7l4rjVEKdWSxu0LbkK7nEcBz869E480MylOihlPfoXVoiEpkB8fXIeT49WB4bwMYwzbtZF5lepB9bqZr9Er+whsNhwvhDEi+j8Cm7e/qt7rDWPcvmol3s8ar68Uncq++tMyJy9veGQMKj1nJG66K7fcdU++hzFaUy1816cZycSizSYOfrANq2clzHHRNHyiNcpqww0vhq7cjdnJMd/DGLdu/5RvqvbG0S3gqs8Cs7MLyqSwJJ7jrhNLadIo90n2rzWMcee/qbiM+Bxrghug+K/BW9icLuFo8aD+oXFYsGB2TyR53v2EtMy6ImBe+ogd239jcZM+mB2dMKWXzTKMMd3gfStp0crIPrteH3Fl37L33EZOvJvKv9P6o2020lKvKJu+umTIKyup+7Q7bep2zfcwxtQUK6+ftRBfUZHjBIE2jVt0Cq/UdsfJ2ZzvYYx7f15H092PAZAGLNn/JJc83akYl8DtwR9QIf2ttSvkMwJCc/9y5VrDGDmzhQf/uIvI9CkQgvtvw82nDqmJ59iztCm2FE1lrZjf/Ruo1jZLvRl9REab53cYY5UqBQ/0yjBGcUOy2TRvva1ZthyG3w0WC+zfDyt+htt6wy+/wr87wNtLc9+9JurXg4/eJ/ODTIii0D5U8fEH8Nw4TcwFOHHCWPWzezf45lvNbb3Aw0Neg0KUB1dedOW3rLu7e64BjLO1O5BmdeVaC40nVajKYU8f6uch+yhDxkmoSojB+TrD+J1MCpUQk6djvPIEG6CxBt9khxxX0XNwcSFjFb3GLmnXnFz8yguCKyUnpnHXv6/xQ9XXjcCWMmF2dsaMs3EbGLJ6KrG+L+PufnX7ODs74+zsfM1jUokRfFI7BVdnCN2pcL9i1bt4V9gSokmukkqf5KjMPDwnJ6fMC6nriY6IIj60J2HpK0o6XnkhW60up19YgGnGQ4SdPY9/Y8fMC8rrcXQ0ytapmsRfN083Ao05LWlvsxH+yBv0ProxT8+xg4ND5sXylf4+sZL3N00g8FZjaGqaGR5Y0oEn271O/2rDrxmkA+PCL7fHr+JVjSG/D0y/pcFkw9msMGsbrsoJUAz7YyAeY6pdVYfJZMrTca1tMoh/D86h7YuroHZ7LN7+OMaEo49vZGtzK4ENn+IO18sXb0qpPL/vK6qsgd5rlYP89yeJSRqTSXOaQXxv6cvNTjZwc8fpki9fJ6/HpozXTEKiG+7ueTvvuPJC9dAOTaMTwzjUbA4Anpa6eF3yIrZiLBowOSqCDgzl+HEPWra4dv3Z+4gMp6Os0KJ+lvscsr/vK1Tk9KHD1MuhfXLrIzJ4tKtCjMe/KH2asMAVODgm4oACcyIng2YTGNYXrapR+aZGWa4P8tJHAJidHOkwbCI/n13NuYenYPKtaoTP3Nw5Pm8HVT59iQ6VOmF2Mp6L/PQRTk5O+LUagbs157bLLOdeDe9mD+Gex8+CjD4ig9uFvTTu9ieHVww2jkkpMsKSDsqEA8406LaS/Rfa4+6e+2p9ufURnXwd+DUpllSXy5l7JrMZU8Z7w2bD6cI5Ovk6QA7PcU59xJWfn16n3Pj3JWOBAeVgxtEhWx02zf5XbiZ0/0GcGl1u+7z2Ean/RhL6ySH+ejd9wHr2FT2B9i9sIvWRIJzaB+SrjwAwJ17C3elyncHbFKnxDjhVUFQIuWI/LkTafc7hoBMZY3VnvJsRAMvyHtNgclI8n+iOp04k7TqP4ZaPifJze9/nlwxjFDccm00zZZoR6LrrDnj0EYiNMwJdw4aCizPYbDD0dvhhMSxZZnRGEugSxaF+fWOlxpq1jNu//ArNmsK0KUagy2bT2GwyrFEIkbN9F3OeK8vectm522ILtVx2V66iR7ZV9CiEVfTqmLbT9ewiRvw6Cq+ErCtSesefZ8Svo+h6bhF1TPYP09udGkGESeNxMZigw+Ooc3wE1U/fSZ3jI2h4eBweF4MJN2l2p9q3AteBSxfytKLkgUv2DU+KrV4fi2/VnANd6Y9hqVyN2Or1c96eB3+fWMmkNQ8TlRCW5f6ohDAmrXmYNUeW2F03QJ2TdfC+6MXFivs42GA6VgfjQs3qkMDBBtO5WHEf3he9qXMy97l0riXVksYnkT9wsir8cJuVv33/YZflR/72/Ycfb7Nysip8EvkjqXYOH6qp03C6cN44Ic2JzYbThTBqavvqr5S+eF1IwileP7Ucc/oqdGZt5vVTywlJOJWlXH5FR1uZ7vc7byS445dtrJO/VryRUIFplVcTHW3/Cq6pjnnbubyWy65plfas77iEU9W/wuKQdeiwxSGOU9W/YkOnpTSt0t6u+gH0U49wcuyCq4ZhWnwCOTl2AWlPPGB33QmmvAW581ouJ77OkVSqd5gGfRfjWCEOmzKeT5uy4lghlgZ9F1Op3mF8ne1b1dNc0Z9eqycb33tkfy/YbKCg1x+vYa5o3+q5Z5UJPP1yzroCMCm0l79Rzg5pEUnU+P0krcctwDE668qsjtFhtB63gBq/nyQtIvcssWtx8snjqqd5LJcT7V6ZrhYnpibm/F6emuhOV4sT2t3+xyhKEuwSNxSrVfPGdM2vv4GjA1StCvc/BL/+Bi4ukJoCi5fAPXfBEyOhW1dj9UUhipOfn2Lu+4paNY3bb78Dz46FyEgb78zRTJuhSUuTgJcQ4mppSeHXL5SPctn5BvqS5KqvWoI8g0aT5KrxDbR/7qXmx37lkRyCUV7x53nk11E0P/ar3XXXDzAuukKO/8ZrX3ah96Pf0/HZP+n96PdM/upmQo7/lqWcPSLdvWi6P5gHF92L90VvKiTWxftiSPr/3jy46F6a7g8m0t3LrvrPBdbMUzDqXGBNu+o31WxcqOWys9qsfPDPGCOgmf0aUwEa3vrtCaw2+wMhtqgU4iru5WT1L3MMVJys/iVxFfdii8p9qOC1LN24Ge0aBgq0gvN+cLyG8b9WxnFo13Ms3bjZrvqj928mcN4L17zID5w3nuj99tXfvBncZD7Fo+F/4aGTsDoZryWrkwkPncSj4X/RxeFUrkMYr6eOaTsBruF0S3Pip4ueeGmjfi9tYvFFT7qlORLodr5AQeUqVfIWqMxruexsaZpKZ8Mzn88s0p93n7Ph2Ow8H7Np+C5jqGpOQWtgWaoZe7/frJjHLwTyWi4n1RsZAY64HIPKM4iruC9LufxKDWhJy7C99Fv0OE4xWQPjThfO0W/R47QI20dqgH0Xa5ZKeduvvJbLzsHPlbiKe0k9Oo6GI0Oo8/IAqs96lDovD6DhyBakHh1HXMW9OPjZl8VUq3MrIlP8seUyeZZNKyJSAqjVuZVd9QNYq7bCViGAmy3OxnvZZjyWl02x+KInN1ucsVUMwFrV/scoShLsEjeMtDTNCy9pfvkVHrwfBg8yggjHT0BQA1j8PUREwC3d4e47wdHRxOinTVSvJhldovi5uys++1TRq6dx+9IleH0a+Pgofv4FJk7WpKZKwEsIkVUdB0Vqwll09qyodFrbSE04Qx07F1rZmxbFxhCj78ke8Mq4vTFEszctyq76sVlx/nMqIcd/5bUvuxD++wCObRhB+O8DeC09GOW8dirYGQhRFf0u/27V+G85T+2Vx/Dfch5l1TmWyy8fF38G/dLfqCfbVXLG7UG/9MPHxb5sBLd6Oa/uaG+57DzNebs8yGu57PaEbSAy9YIRQFAmlMkYHqRMTsZFv4Lw5Gj2hG2wq34A5ePIucD01cVyCqgB5wKWo3zsy2o5F5u3YHFey2WXdCEcz80rqTnjIRwvZL3Id4w+R80ZD+G5eSVJF+yr34RmWPQ2Tt1ak6VrhpHiY1xsp/i4snTNME7dWpOhUdswXWPBi2u5MlhssplwsBpD1BysDphsphzL5VfjJt64RMZeM/vNNSKWxk3yN59ihk3LN+Nujcl1DQIFuKfFsGm5fQHH4zZFjE1DbiNHlCIOxXGbfX11bZPGM33RkJwZ22ubCnAuWb01B6Pd+H13IgkpWetJSNH8vjuRg9HuUL21XdXv2mtm6u7x9Ihew/TvujJ84Z30/n4UwxfeyfRF3egRvYZpu19g116zXfXXaVi7UMtl59qqEueqrgBAaRsV9m3A+5+fqLBvAyr9M/pc1RW4tqpkV/1mRwdONX4R4KqAV8bt043HY85hXrw8M5lJ6Tre+BUTTunvCCcUpvRQUsrN48Fk33NQ1CTYJW4IaWmaUf/TbNwEIc1g6TL47nuwWo35kGbOAI+KJl4aD1u3wuw5Jb3HQhgrNb70guKB+4zb27dDeITm9kGw9i944SVNUpIEvIQQlzX3b0fsvjcBrgp4ZdyO2/8Wzf3b2VV/pLsXJ6vBn+01idm+jE5wNe4/WQ27s5bMZ7djijcmtdbaSnzEemJOLiY+Yj1aW1FoTJfOYz5rX0ZIxrfU0UeD+Hf+E6QlGXOIpCW58e/8J4g+GlTgb6kzhtBlD3RlUKgCDaFr4t2gUMtll3mRnNsaVrpgF8mxZzcB4FWtL0377cTRxcgCdHTxpWm/nXhV65ulnD12nz+BxTEu99USFVic4th9/oRd9VfxylugMq/lsnP1Mf7Oc/NKGo5smTUj5PFWeG5emaVcfiVsieBsq8r8/W53Ev2zzrOT6O/O3+9252yryiRssW+obUawOPpog1zeZw2ylLOH2cHEbeFJgMo5+w1F74gkzA72Xe7GhuXt2PNaLru43IJ0dpbLrqiHhIORnbb1WM6LRGTYeizZ7uy06AuwJuxWnt/2NheSK9M+fht9o36hffw2opP8eH7b26wJu5VoOxeUrOtkwi056er2yaBtuCclUdfJvtdQ1MGtWMyx1+6HzLFEHdxqV/0AQQN6sKPebKKS/bGlB5VtVgcikwPYUW82QQN62F13Bmv9HiT3m42ukLW/0RX9Se43G2v9gj9GUZFglyj3LBYbE1/T7N0Hbm6wczdkzO/Yqyeg4elnICVF4+lpYvJExVNPSDaXKB2UUtx9p6Jyegb1suWwfKUxxHb7dpjwqs51ZRMhxI3HbDLzUM2bSfv2FVwjsq7Q5hoeT9q3r/BgjZsx2/ktrI97AAAnq8H3fTSruthYG2pjVRcbP/QxAl1XlssvlWBkevzpmMogjzhi0wMqsSbNII84/nRMzVIu30xmwh2e4fCKQaTGV8yyKTW+IodXDCLc/EyBvqXO69A4e4fQ1TUrXKxJ18zec7EmUvc6CwnkJvMiWcHVWSEaVMEukitpE17V+lKn0wIc3bLOVeToFkidTgvwqtaXStr+y5TY8Ly9PvJaLrsB7UNRSYHoXIYPaa1QSVUY0D73SbmvpXKTUNx8jbZRtmwZIenBD7fKVajcxL76UyOS2PZSesA7+xOZfnvbi+1ItXMuIWvVVkSdCeXwisG5vM8GE3UmtMBDn5KTKpH8Shgu4Vn30yU8ieRXwkhOsi9jBsArMG+BuLyWyy4ydn+hlsuJx6b07MDobNmBUUZ2oMemlXbXDRC5bzOJsddemTkx9gKR++zLfsuYM25N2K3c9vvvPLJ+AS9sn8Ej6xfQZ/VvrAm7NUu5/DIpuN3DEWNcag4BQRSDPR3t7uvymnlpb4ZmhgCnIE4ufTJLUPnU0icIcAoqUL1XstbvQeIjq9GuRqakdvUm8eHVpTrQBbIaoyjn/lxr481ZcPEitAuF06ehRQis3wC9e0LcRdiwEZo3hY2b4OYu0KqlBLpE6eLmpvjgXXjgEU1CAqSmQpoFXpukcHeXxROEEFk1OxCM58RobJMXEdk6gKTKbrhGJlJ523lMttrUDAyGWvbV3dg3/SLfJSxzrqIsNKjkKjT2te8iXLtX5k/H1MyVn64UoTTj3RKYmgjt7JwMV1ttnJ2bSs5ftRv3nZ2bStD9NpSdw/TyOv+KvfO0mBQMdXVkYYpCaxvqivl+tLahUAx1dcKk7P8iJNisudfJyrJUM1fOeOWJEegKNttfd5PADtSsey9Aln3PuK21jZotp9Ak8Zjdj+EV6MfFPJazh5OjA7fXfo3vw0YYga0r2jojAHZ77ck42Tl8yGQ202bA7az79L1cy7TpPxiT2b6g7Lk6XiQGVrjGDigSq1TgXKIX9sQRtFacWHcLYCW3idlOrLuFIJ1b/uP1Wa2a2XM0kZGVUA/baNTgPBW8rMTHmjlw2BOtK3H6tKZTRzDbEfht1y+Ug58G4mo7n+X5zaC1IskUSLt+9vV1DhePkKoq4+gWeNX7wKjfhiXxHA4Xj0DlJvmu32a1sv2jl/GMCsNj688kNGqXuWKo+4FNKJtm+7F/qdaup92vo6IO5jRvBpUrQ2Qk2DCzLbrtVWX8/LB7bjlI7+ucrSxNNWXpMzxVwfu6vGZe2puhCRC36iSnRq676nuJtPBETo1cR42PuuDZ2775G69iMqPNRp+mzU5gsm+BjOIkmV2i3IqLszHzbSPQ9fhjMHkiNGtmBLoG9IdTp40A17P/M9JwjxyV7BhRegUGKmZMVZhMxrylf/0Ds+dotmzVnA/XrPhZEx4hr2EhbnTaaiNs4lYUYLZBQPqcVAFbzmO2GdPDhE3cirbaNzRm714zKZtfQ6OuymrRWqFRpGyezF4751BJDQzhbbeMSZuzbUy//bZbCqmBIXbVn7AlAktY4jXLWMIS7R6+BeDe1g/HQLdrDl1xDHTDva39Q7gyLtA8s33Z4aUU9zoX7ALtysd4wSWNR53SuMvR+P8Fl7QC1328Sjsc3KvmeIEPRsDLwb0ax6vYN9QWjEBForp25lWiqmJ3oAJg5G19GRo4D1Ny1ixGU3IgQwPnMfK2vnbXjc1Kgwu/c2szN9ydsx6Du7Pi1mZuNIj53e656yxBeZvHKq/lskvYEoEl0siMyZnCEmkr0Pts124jCAKgtYn9h7zZstmX/Ye80elZgRERRjl7ODo5UH3Q5PT6r+7rAKoPmoSjk30BzUpulTn974vp9eU85Pz0vy9Ryc2+wH7kvs0kRhkZXTlnB2oSI8/ZnXUFRR/MMZsVo5+6dqDyf6OUXcHMKwWbNeNdrNn6uoL3o5czNHN/HxQkQzPj8z7HadnS7yvI5315IJldotw5F6bZvVuzbAXExsFNnWHo7YrJUzRr18EjDylOnNAcOQqvvAS33mKibx+Nk5Nkx4jSrXkzxdjnYdoMjZOTcRL3zXdw4qRm125wd4cF86x4eJT0ngohSsp1gzn6cjCnQvv8DzWMvgC2U7dhWTcPxzYvg/sVw2MSA7FsnYzt1G12z6GyJ3IrEeoa3xYriCCNPZFbCQnsmO/687rEu71LwQMos4nAiW2Mb9vTVxe8vNH4L3BiG7szxzIEmzWNXdI4blNc0saqarVNukBz8GRnUlC3EAJnV7qUx+/ajXL2PXZGoCLqx0dzzbwqSKAiw8jb+vKQpRdLN27mXGw4Vbz8GdA+1O6MrgwZc9fV8Xeklp8D52OsJKbYcHM2EeBtxqQUpM9dZ61+dbbL9XiYlZF0lZdydjwHxfE+y2sfY29fBNBrRB9+4WNO//QKbvpyX5dkCqT6oEn0GtHH7rqb+rfD6e+nOfbPg1Rv+QZO7lUzt1kSz3H635dwjPmXpv5z7aq/OIbQZQRzEqPOk/PrROFWOdDuYA5Al5sUUyaTnsV3+X4/PyPQ1eWmwunwiqKvM5nNtBr5Gn+/PoLcPgxaPTbZ7sy6ov68Lw8k2CXKlYMHNWPHa+LS81AnvQKhbRVjx2u2bYenR8GwIUawa93fcPAQ3HoLEugSZUbf2xTHT2i+WwTe3hATA8eOw6RX4bUpcO8DcbzxOjRpLK9pIW5ERX2RmTE3iu3UbaSc7onJbzO4hkOSP7aIUNDmLOXy60Ji3jI98louu6IeYpjBs3dNanzUhbCJW7NcjDgGuBE4sU2hDSspigu0olYxjx9PeS2Xm6IMVFzJydGBoTflP/B6LVfOSWdSiio+OV+y2Tt3XcYiBHGanFcD1BrP9OCpPYrjfZbXPsbevihDrxF9sNzfk03LNxMbFoFXoB/t+oUWOFBqNpkZ020WY5bdSezZVVSo3A5HV38sSeHER24CbePVbp/YPb9icQyhK+pgToYuNyk6dTSy9KIvGM9p82b2DU8tbjU63kbnCfPY/tHLmZl2AG6VA2n12GRqdLzN7rqLI6hc1kmwS5QLly7Z+PgTWLLM+MxWCqZNUdSuBY+P0pw6DT1ugb//gYH9NbVqmXhtoiakeUnvuRD598RjinPnNP+sh1q14MQJeG4MVKkCly5pnhoNr06g0L7tEkKUHUV9kXnlHCpoM7bwDleVKcgcKj5ueRval9dy2WUMMbScT8wtEQHHgIINMczg2bsmHj2qk7AlgrSIJBz8XHFv61fgjK6yLjPQAuQ8vEfjbTLZHWi5UlEFKoqazuOcdHktl13GIgQLU80Yb4Qrn4eCL0JQHO+zLH1RLgo6n1MGRycHOt9euAFNgG71B/Jqt094f9MEoiLWZ95f2b0KT4S+Ruda9gdkiyPrCoo2mHMls1nRskWhVFXsanS8jWrtehK5bzNJF8Jx9fGncpPQAgcBi+vLm7KsdPf0QuTBlq02XnjJmLS7gjukWWH6G8bE3Y89oUlOgabB8NtqcHCAnbs1bVsrOnWUQIAom8xmxcSXYex4jZsrtAyBxUvg3Dno28eRU6cspKSW9F4KIUpCUV9kGnOowEuv5B6IKMgcKk392+HrFkhUYu4XaJXdA2nqb998TsU1xPDKx7tRh4/k5rqBFuAOT2dMyYXzQVZUgYqiZK3aCluFAFR8OCqH94FGoSv6F2g1w6JchKA43mdF3RcVl861+tChRi/2hG/iQmIEPm5+NPVvZ3dGV4biyrqCogvmlCcmsxn/Zld/OVQQxfnlTVl1Y3+1JMq0pCTNjJk2nh0Dbm5QoYLxPn/7LUVSMoz6n0aZoGJF2LMHHhsB3btB1Sql+0NPiLxwdlZMfV0xeaLi2dEmXp1gTFy/YqWFSj7gV9mYy2vPXk1aWtka4iKEsF/GRaZxI/tG47+CXmQac6goKmdLKvHzgymTCzaHitlk5sl2r6ffyvkAngh9rUAXghlDDB0D3LLc7xjgVrgrV4lcZQRaPLPd7wnc62SlpesN/n28yUxK1/GAEdi6UsbtlJvHQwEDIlcuQvCIl3OhLUIAxfM+K8q+qDiZTWZCAjvSre4gQgI7FjjQlSEj68rNN2vA3a1yIJ0nzCu0rCu4HMypdfMg/Jt1kEBXMSiOz/uyTmmt89SbxcTEFPW+lChvb+9yf4yFrSTb7PARG8+NgZhY6NMbNmwEFMyYavz+2RfQMMjYHh0NM2dAyxYl/0aX11n+SZtdX3S05pVJmoH9YdqbkJJiZDHWqQ1H/4M2rWHiy4qKBZ0ApZyS11j+SZtdzds7f6uWFaT98tL+catOXj1fVGDhzhdlteoim0Pl7xMrjaE9iZeHxRTG0J4raastz0MM5TVfNGyaHCfYl/Y2mI/8hvOfUzHFn8+8z1YxgJSbx2Ot36NQH6uo2jw/7zN7FWVfVJSK63Vus1ol6ypdeexbiuPzPsOUJAcuovBA85LrNRaTuYK9bZ7f86qc3OBfm4iyKCHBmJMoJQUaN4I/14GnB0x8BeZ9Clu2Qo9bYdzzipW/aNasgXp1S/8HnhD2stkgMRH8/BRrV3syeFgsYWFw4iQMGwrf/wAjHtdMnwI1a8p7QYgbQXHMF1WUc6gU1dCeK8kQw5JXFifYL07W+j1IrNsd89ntqIRItHtlY+hiIb4PilpxvM/K8nxOxaEohtCJ0qO45oe06cuLuFrTbxfm6r9FQTK70pXHKG9RK+42S03VxMUZwxJ37Ybz5zWz34Xq1eHhh2D2u3AhfXnhhg1h7vvGG1xrjcpppZkSIK+z/JM2yxubTWMyKby9vTl8+ALLV2rmf2Zs8/c3Vm10cIBXJyg6digd74fSQl5j+SdtdrXSltklCpe0efGS9i5+0ubFT9q8+Emb22evVaXP73f5GsITnaf5/Uoys6vkx3UJkQcxMZqHRmjufVDzzhxNRATMnA1BQdCqFbz0Mly8CFYruLtB9aqX/7a0BLqEKEqm9K9WlixL5s7hmnp1FX3TR/qEh4ODGQL84czZEtxJIYQQQgghRJmx16pYmG0hC4A4YGGqmb3W0nutLcEuUSZ4eBiBrX59jMnop7+ladoUkpONIVpKGZNzj3teseRHmPCivLTFjalLZyca1DdWJ6pbG77+Atq2gcQkOH4C/jum2bffxq7dmvh4GToihBBCCCGEuJpNw7LUjGHTOc+CvyzVjK2UXlJIRECUar+vtjFvvo39B2D8WEViInz3vTHx9p49xkSUox43Al1PPg79+iqcnORlLW5c3t4mZs9UdOkM77wHi5fAjKmK23oZQeGfV8ETT8GYcZqHHtUcOlxKP52EEEIIIYQQJea4TaUPXcwte8vYftxWOrO7ZIJ6UWp9971mzvtQoQJciNZ89gVs3mLcPnYcXF1hwTzw9TVx220aD1lpTggAnJ0VkyfCRx9rvv4WDh3WNGoIbVpBbBwcOmxkeqVZ4dHHNaOfhoH9ZcivEEIIIYQQwnApj9+J57VccZMUGFHqaK15/yMbc97XdO8Kb78JO3YaqyyCsQojQHLS5QnpJdAlRFYmk+KJkSYmT1Qc/Q9W/wFDh8CnH5t45n/g6AipqcY8dzPf1rwySWMrrTnIQgghhBBCiGKV10vs0nopLsEuUapYrZoZb2m++dYYqti7Fzw12phU22QyhmF5esLrk+DjjxQNGshLWIhr6XazYt5HCg9PeH4cLFlqY+06qF8PqgReLrd5C6xegwS8hBBCCCGEENQ2aTzRQG7XB8b22qbSef0gwxhFqWGxaF5/Q/PHn9CkMZjNxsU5QI9bYeMm0Bo++wS8vCTIJURe1aqp+HQufLZQ06G9ws8PEhI13bsqFi+B9z/UJCXB5Nc1Cz6HoAaaF8cpnJxK6dc0QgghhBBCiCJlUtDfycrCVDNGwOvKawMjwNXfyYqplF4ySLBLlArJyZpRozUHD0KrFrBrD6SlgZMTTHoZOnc2sXmrjeQkhZdXKX03CVGKOTsrHnvEeO9UrqwZ9T/YuVPTvr1i0ivw5kyIiYWzZ+H0adiwUfPqBE3HDhJYFkIIIYQQ4kYUbNbc62RlWaqZuCvu98QIdAWbS2dWF0iwS5QCqamaJ5/WHDpsDFPcvsO439nZmJ/r9zXQuTOEtpGLbiEKg9UK7dspfCtpPp6n8faG99+F31bD9z8Yk9cnJsK4F6FpsI3XJ0GlSvL+E0IIIYQQ4kYTbNY0dknjuE1xSRtzdNU26VKb0ZVBrl5EiYqJsfHpAs1/x4zbTk5GwAugahVoHwotQ0r5u0iIMsbBQTH8bkWvnibefVvRIgQeeAQuXoR3Zhnz5RnlYM9euONu+PJrTUpK6f3mRgghhBBCCFE0TArqmjUhDpq65tIf6ALJ7BIlJCZGM3ee5udfwGaDxg3hyH/GJPRoGDYEHn9M4ehYBt5FQpRhXl6KHrfC+XDNT0vhp6UQ0gwa1DdWO42KBi8v+OhjzXffw8hHNb17Kkxl4RNOCCGEEEIIcUOSzC5RrKKjNXM+sDHkTs2Kn40sLn9/2H8QWreC6W+AiyvUqyuBLiGKS5VAxQtjTDz2CLRoDoePwuEj4OcHrVpCeDi4uUFMDEydDsMf0OzYKVleQgghhBBCiNJJMrtEsYiK0nz1jWbpckizwM03Q+NGMP8z40Lao6IR6DKZTPzwrcbTUwJdQhS34feYGH4PJCYamZe//2EMbQTw8DDm8TKb4dQpeGq0pl2o5uknFTVqyPtVCCGEEEIIUXpIZpcoUpcuaT6ca2PY3ZrFS4zhUU7OsGMnvPeBcfHs7w8XL8Ghw8YFswS6hChZbm4KFxfw8YaZM6B9O3jlJRg/TuHifLnc5i1Gltes2TZiYiXTSwghhBBCCFE6SGaXKBKpqUZw64svNZcuQc8eUL8evP+hsT052Zj8etQT0L8v7NqtaNRQglxClBaPP2bi/ns1bm6KkObGfF0BARoNOJghI7RVtw4sXQ6rftXcN9yYb8/ZWd7LQgghhBBCiJIjmV2iUNlsml9/09x9r+a9DzSNG8Enc41hT3PeNyajr1UTqlWFSpWg720KJycTbVrLxbEQpY2bm/G+3LYd5n2qSUkxsry+/AK++0rR9WZjbi+bDZKSYO48zZ3DjT7AZpNMLyGEEEIIIUTJkMwuUWh27da8M0dz+Ag0DIIXX1DUr6d5ajQc/c8oc9cd8NgIxf4DEB4Bzs7XrFIIUQp07KD49kuoWlXRrw8sWabx9tZUrQJ3DIWlyyA5xSgbGQmvvaFZ9AM8+Ti0bCGBbCGEEEIIIUTxkmCXKLDISM0HczW/r4YAf5j0iqJdqGbefM3o54ysDwBnJ2P1RQcHRbOmJbvPQoj8qVrVCFrZbJqflmoqVoA9e2HObMWoJ+DHxZpPFkB8vFH+8BF4+hlNp46axx9V1KwpQS8hhBBCCCFE8ZBgl7BbSormiy81C7/UWG3w8IOKwQM1q36FoXddsYpbRXjjdcX2fzWtW8kFrxBlmcmk+HQuJCZBQjykWeHhRzWPPgKrlit++VXzznuXg17rN8D6DZrePTUP3K+oEih9gBBCCCGEEKJoSbBL5JvWmvUb4P0PYzl9RtP1ZrhzWMbKbBATo6nsa5RVwEcfQI3qipDmcpErRHng4KDwqGgEsvfu06Ra4IWX4NUJUL++4sP3IDxc894HcOKk8TerfoVfftP076t54D6Fr6/0B0IIIYQQQoiiIcEukS8nT2reeU+zZSvUq6t4YiTs3QdPjAJr+oTUXbrAi2MVhw5rDh5S+PuV8E4LIYpMcBMj0+uzLzRtWsOUaZoDB+DHRYovP1fs3G3jrZlG0EtrWLIMlq80gl4PP6jw8pKglxBCCCGEEKJwyWqMIk/i4zVzPrBx30Oa/Qfgpk6QmgoffAQ7doJv5ctl42LA3V3RsoWJu+9UODvLxawQ5Zmzs+KxESYqVFCMeRb8/WH1H0YW6Ky34dZbFG+/BV6eRnmrFX5aCv0Ha8ZPsHEuzFayByCEEEIIIYQoVyTYJa7JZtOs+Flz53DNou+hShVISYG//gF/fxM+PnDpEiQnw5DbYfjdMHtWSe+1EKKkODoqXF3BbDYC4m1aQ62a0Ka1ia8XQquW8Mz/wN/PWLzi739g2F1wz/021vxpQ2td0ocghBBCCCGEKONkGKPI1d59mrff0Rw6DC4uxhCkqCjw84OXXoBatSpw972xmM0w+y2oX19ip0Lc6CpWNLK4lDIyOhs3wpi8DzhxUnHkqOaJkYrPPoWnRmuO/mdsO3kSXpkErjM03btp7h8OgYHSpwghhBBCCCHyT4Jd4irnwowg18ZNkH69SmAAdO4M2/+Fffvg1UkQdzEWR0d4epQEuoQQl2UEurTWLF+psVqNoc/NmiqW/ggODkaZtm00x45DhQqXV29NSoIVK42falVtDB0CPW9VVKggw6GFEEIIIYQQeSPBLpEpItLGtBmwZatx22yGzp1g7TpISoYvFoKTE5hMEBkF/fs58/ADqVSqJBehQoirKaV4azrExxu/x8Rq/lgDA/sbAa8RDyu6dYX69eC31ZoZb0FampFF6uAAZ87C2+/AO3M0rVtpbh+kCG1rrAYphBBCCCGEELmRYJdg334bM2fD4cPGbaWgRnX48H2FR0XFncNtnDkDzs7GfF0d2sOjjyjatK5ATExMie67EKJ0c3BQeHkZv6/5E+a8rwltq6hezZjfq2GQsa13T4WPt43YOEhKVHz3veb0GSPrKyHBCMJv2apxdYFbumv69VU0ang5i0wIIYQQQgghMkiw6wYVFWVj0xb4fCGEhRn3+VYyhioeOAiHDsGWLZoO7SEy0tjeuhXcN1zRpLFcXAoh8u/2QYo2raB6NaMPWfiVpkljaNnCuB3a9vJw6MaNNZNfh7DzlzO9lDKyTJevhOUrNb6+0L+vpldPRZVA6ZeEEEIIIYQQBgl23SAsFo3ZbFw4vjpJc/DQ5W0B/uDgaAS1floCHh7GReWp03BLd8Xzz0LTJlCtmlxMCiEKpkYNox9JStIsXaZJTDSCXVprbDYwm43tDeqb+PJzSE7WLF6i+WkJhEfAc8/A7HeNlRyjomD+ZzD/M029upoB/aF7NyMjVQghhBBCCHHjkmBXOaa1RinFtu02xrxgZG6Fnb+8PcAf3p4JHhWh/2AjyDVzhuLwEc3Pv8Cdw4wLxt495cJRCFG4XF0VXy805ugC2LUbXn9DM2Ma1Kl9uc9xcVHcfafi7jvh4kUbScmK/45plizNWt/R/2Dm2zBrtqZVS82ggYr2oeDkJP2XEEIIIYQQNxoJdpVDFy9qnnxaE9oWTpzQbPvXuKAMO28MBQLjdkQkzF8A/2wAqxUeuh9CmiuaBsOwIXKBKIQoWk5OCicn43dHR2jQAKpWMW5v2KhJSoJuXS/Py+XhYcLDA54bDd1u1nz1LezZDYlJl+vUGrZth23bNU5OENpWc/sgaNVSyfxeQgghhBBC3CAk2FVOTH7dho+PMdxw6Qo4cRKOnzC2OTlBxYpw6RK4OIOnp7GaYmqqMelzz1uNoT/NmhrlM4YRCSFEcWnSWPHGa5f7nuUrNBGR0L2bMY/X1m2aGjXA388IWrVsoWjZAmw2zYGD8MNiTc0aRuB+5c9GMD81Ff7+x/hxc9N076pp0MDIHKtfD9zcpK8TQgghhBCiPJJgVxn1xZc2duyE/n1h0xZY97exUuK32crdNxweflAx+lnNzt0QnwAurnBbL+jUUdG6lbFamhBClCZTXlNcSF/s1WrVvDJJ06UzvDDW6K9W/aIJaQ6BgYomjcmycEbdOjY+XwgnToAlfZhkYqIxsT0rATQAgYGaZk2hRUgSNapr6tczhlcKIYQQQgghyjYJdpVyWmsuXDBWHvtpCbRsYWQs7D8AFgts3Xb133h6Qq1akJwE99xlZGoFB2uaN4dOHRRBQchwHiFEqWYyKXwrZfwOcz9QZHRbERGaKdM0z45WDB4IMTGaefM1tw9S1K2j6NxJcVNnY7j23n2wabOR/dW8Gaz501h8A4yVaMPC4NffEgFjYY5aNTVDblcM6GdMmp+WBo6O0l8KIYQQQghRlkiwq4RprbkUDxERcOasJuw8RITDgYOwb39Gmcvlf/8j69/7+sIdQ0HbjG2jnjBWNvv5F/jtd50Z1HpshKmYjkgIIQqXUooa1S/frlwZFn2jcHczboeHw19/GUOywfgS4MUJmg/fN4Y7enqCjw/06wOPPKSY876NP/40VnO8ktZw5ix8OFcz7xPNtCnw9DMw6glNy5YKH29jOHiVKvKFgRBCCCGEEKWZBLuKWEqKJjISwiOMgFZ4BIRHaM6eNebUunTp8mpkGTKuoa4Mcrm6GplcNptxoVfJx9h+/jy8/6FRpkoVY0iiUoo+vaFPb7kYE0KUP0opqgRevt2woWL5ksu3/f1h6BBjxVkwVnp87wOdubKsj48iKkrzywo4c0bxxVdm9u1Pw90NzoVBfLzxdyNHGf+//S6YzZpOHWHtOmMyfX8/TY9bFY0aGb9XraJwdpY+VwghhBBCiNLghgp2xcVpoqOhRg0jKHTxkiY+HgIDjO2JiZqUVPD2Mi5YUlI0VuvlSYzT0jRaa0wmhdWqiYszJnpPTjb+37MXTp6EuDiIjTP+t1rzv59ag9kMHhWhTh0YP07h7KQZ/TycPm1kMYSHG8Gttm2hWVNj7q2qVeRCSwhxY7oy06p2LcXjj12+PXigouet4JaeCda6FYx+WlGhgqJhQ2jfzolLl9KYM9tEWprm2TGa/fuhQgWjL09LM37WrjP+3mIxMsDmf3bFNxJo6tfTVK8Gm7dC9Wrw3rvg4mxi2F022raF55+RDFshhBBCCCGKQ5kKdtlsmj/XgUmByZz+v+nqn8BAqBKoSE3VHD4C1aqCl5fi51Wa9z+CObPB1VWzfCUsXQazZ0KFCql8OFez/V9wddHYtDHhO0DtWhoXFzh6NGOyY32Nvbyai4uRiXU+nPTgmZGpZbOCoxP06G7UeC4MXF2MYTaVK8OQOzX+fhDgr7DZIDBAE9oWGjdUNA2GSpUkuCWEEHnh7n65vwxqoAhqcHnbfcNd6dcnGTC+CHn7LaP/z/ii4/ARG8dPQPQF2LnTmDMxMcH4PLgyA/fIUeMH4OAhuKUngA0wPmt++934PTER3FzBvQI4OBhfjLQIgdq1jM+II0ehYZDRx6ekGJnANWtAhQqKVIvm0iVjCLuzk8LVVdO6FTg5KRlaKYQQQgghRDqltc5T5CYmJqao9wWtNUuXQdh5bYSTNBw+DBfjoUVz45v1H3+6fj1KgZMj2LTxDbxKD4rZk2WVV0pdvui5cxgENYDFS4wA2aJvwNvbxLNjbGzZmnsdnh4QEgJTJhvf/v/1t6ZSpayrjJUm3t7exfK6KE+kzfJP2ix/pL3yryBtZrFoIqM1p08ZE98fPAjnzkHsRWPoutVqfD44O18eHpkTk8koZ+/n1LAhxpcoycnw51p47llYvRrq14dt22Fgf/hhMURHG8PnvbwgNdXYp9RU4/G7dYMunRVxF6HHLcbnzpatmlSLsbgJwLq/NQ5m6NvHh5iYGH79TVOxInRob2z/aakmIADahxoT/P+4WHP7YCMQl5amsdmMz0qbzThWmwaPisbfxsRoEpOM+zN+HB2gZk1j+8GDmviErNu9vSG4ibF99R+a5JTL29LSuGqlzqLk7e2dr/IFeZ/K+7z4SZsXL2nv4idtXvykzYuftHnxs7fN83telZNSl9n13Q+aiAjjpF9x+Zvzc2cBZXwLjgZnF+MEPePCwGw2/s+4sDCZwZR+28HByKYym+BSPDg5gbsbmB0g/hK4ukElHzNKWYm7CE2DjeBacjJs3gKDBkCTJoqDhzT/rDcuKBwdjf3K6Yv0+4YrHB0V7u6a/46Bt7dRaMhgRdcuxr47O0PFCsYFh5cneHgYGQVXuqlz6QxyCSGEMDg6KqoEKKoEQGjb3Mtprdm02VhN9/x5zfnzxu8XYoyVc202iE+ABvWNyfSjo43sMHd3aBQEdwyDMS/kXv+iH4zPwYzPxHHjjf9//wP8/IzPquRkOHnKuP9CjPEZqzE+zwYPND4nx443AlIz39YoICnZGJLZqYPi9z80k183vtV5eWI0Ov0LpdC2RrBr4VeaufMyvj+7/D1av77GZ97sdzVLlmXdby9PWLHU+KybOl2zYVPW7Q3qw/x56dvf1Pz3X9btnTrCtCnG9lnvaC5ezLr9kYcUTRrn3m5CCCGEEKJ8KlXBLqUU3ywsmQCPt7dXjhHHwYMu/96mtaJN67zX2aG9okP7rLeFEELceJRStG+XeSvXclobq+jabJrYWGMYvJubwmLRLPoGEuKNTKuUFOPHajUWLalX16jz9z8gzWJ8UWSxGD/NmkLTYEXz5prFP2VkVunMDKtOHaFxIxNnz2kSEoy5KjO+0ElJgd69jH2rWQOGDDYCZ56eriSnJJFmgaG3G9ubNYX7hhtZYmazSs941plfRt3UWREQYPy92Wz8uDhfPvY7hilu6X55m9kMFSte3v7iOEVqatbtFdwvb1/wicKksm53vqJ+IYQQQghx4yhVwS4hhBDiRpYx75bJpPDxuXy/o2PGCpTX/tKkV4/ct3lUVDxwX+YjXbW9ahXF06Nyr79BfUWD+sZ2b283YmJSsmxv3kzRvFn2v798u20bRds2ue9fq5bXPragBtfe7u8nXygJIYQQQgiDLA0lhBBCCCGEEEIIIcoNCXYJIYQQQgghhBBCiHJDgl1CCCGEEEIIIYQQotyQYJcQQgghhBBCCCGEKDeU1lpfv5gQQgghhBBCCCGEEKWfZHYJIYQQQgghhBBCiHJDgl1CCCGEEEIIIYQQotyQYJcQQgghhBBCCCGEKDck2CWEEEIIIYQQQgghyg0JdgkhhBBCCCGEEEKIcuOGCXbFxsby3HPP0bJlS1q3bs2LL75IQkLCNf/mu+++495776Vly5YEBQVx8eLFq8p069aNoKCgLD8ff/xxUR1GsSmq9rKn3rLCnmNLSUlh0qRJhIaG0qJFC5566imioqKylMn++goKCmLlypVFeShF5quvvqJbt240bdqUoUOHsnv37muWX7VqFb169aJp06b069ePdevWZdmuteadd96hU6dONGvWjAceeIATJ04U4REUv8JusxdeeOGq19PDDz9clIdQ7PLTZkeOHOGpp57K7Ms/++yzAtdZ1hR2e82ZM+eq11ivXr2K8AhuHOX5dViU5s6dy+23306LFi1o3749TzzxBMeOHctSJi+fx+fOnePRRx+lefPmtG/fnunTp5OWlpalzObNmxk0aBDBwcHceuutLF68uMiPryz4+OOPCQoKYsqUKZn3SZsXvvDwcJ5//nlCQ0Np1qwZ/fr1Y8+ePZnb83LelJfz2YMHD3L33XfTtGlTunTpwrx584rj8EoVq9XK7Nmz6datG82aNeOWW27h/fffR2udWUbau+C2bt3KyJEj6dSpE0FBQaxevTrL9uJs4+udY5cH12pvi8XCm2++Sb9+/QgJCaFTp06MHTuW8PDwLHWUqvbWN4iHH35Y9+/fX+/cuVNv3bpV33rrrfrZZ5+95t8sWLBAz507V8+dO1c3aNBAx8XFXVWma9eu+r333tMRERGZPwkJCUV1GMWmqNrLnnrLCnuO7ZVXXtFdunTRGzZs0Hv27NHDhg3Td9xxR5YyDRo00D/++GOW11hycnJRHkqRWLlypW7SpIn+4Ycf9JEjR/SECRN069atdVRUVI7lt2/frhs1aqTnzZunjx49qt9++23dpEkTfejQocwyc+fO1a1atdK///67PnDggB45cqTu1q1bmWyfnBRFm40bN04//PDDWV5PsbGxxXVIRS6/bbZr1y49bdo0vWLFCt2xY0e9YMGCAtdZlhRFe7377ru6T58+WV5j0dHRRXwk5V95fh0WtYceekj/+OOP+vDhw/rAgQN6xIgR+uabb85yvna9z+O0tDTdt29f/cADD+j9+/frtWvX6tDQUD1z5szMMqdOndLNmzfXU6dO1UePHtULFy7UjRo10n/99VexHm9ps2vXLt21a1fdr18//frrr2feL21euGJjY3XXrl31Cy+8oHft2qVPnTql//77b33y5MnMMnk5b7re+eylS5d0hw4d9HPPPacPHz6sV6xYoZs1a6a//fbbYj3ekvbhhx/qtm3b6j///FOfPn1ar1q1SoeEhOjPP/88s4y0d8GtXbtWz5o1S//222+6QYMG+vfff8+yvbjaOC/n2OXBtdr74sWL+oEHHtArV67U//33n96xY4ceMmSIHjRoUJY6SlN73xDBrqNHj+oGDRro3bt3Z963bt06HRQUpM+fP3/dv9+0adM1g105neyXZUXVXgWttzSz59guXryomzRpoletWnVVPTt27Mi8L6eOvSwaMmSInjRpUuZtq9WqO3XqpOfOnZtj+f/973/60UcfzXLf0KFD9csvv6y11tpms+mOHTvqTz75JHP7xYsXdXBwsF6xYkURHEHxK+w209oIdj3++ONFs8OlQH7b7Eq59ecFqbO0K4r2evfdd3X//v0LczeFLt+vw+IWHR2tGzRooLds2aK1ztvn8dq1a3XDhg11ZGRkZpmvv/5at2zZUqekpGittZ4xY4bu06dPlscaPXq0fuihh4r4iEqv+Ph43aNHD71+/Xo9fPjwzGCXtHnhe/PNN/Vdd92V6/a8nDfl5Xz2q6++0m3atMl8DjIeu2fPnoV9SKXao48+qsePH5/lvlGjRunnnntOay3tXRSyXxMVZxvn5Ry7vMnLNeiuXbt0gwYN9NmzZ7XWpa+9b4hhjDt27MDDw4OmTZtm3tehQwdMJlOhDAGYN28eoaGhDBw4kE8++eSq9Oqypqjaq6ifh5Jkz7Ht3bsXi8VChw4dMu+rW7cuVapUYefOnVnKZqT5DxkyhB9++CFLinRZkJqayr59+7Icq8lkokOHDuzYsSPHv9m5cyft27fPcl+nTp0y2+bMmTNERkZmqbNixYo0b9481zrLkqJoswxbtmyhffv29OzZk1dffZWYmJhC3/+SYE+blUSdpUVRHtvJkyfp1KkT3bt357nnnuPcuXMF3d0bWnl+HZaES5cuAeDp6Qnk7fN4586dNGjQAF9f38wynTp1Ij4+nqNHj2aWyUsffCOZPHkyXbp0ydK2IG1eFNasWUNwcDBPP/007du3Z+DAgSxatChze17Om/JyPrtz505at26Nk5NTZplOnTpx/Phx4uLiivowS40WLVqwadMmjh8/DhjDsrZv385NN90ESHsXh+JsY+lrchYfH49SCg8PD6D0tbeDPQdV1kRFReHj45PlPgcHBzw9PYmMjCxQ3ffeey+NGzfG09OTHTt2MGvWLCIjIxk/fnyB6i1JRdVeRfk8lDR7ji0qKgpHR8fMziFDpUqVsvzN008/Tbt27XB1deWff/5h0qRJJCYmct999xX+gRSRmJgYrFYrlSpVynJ/pUqVrpo3JUNUVFSWE9yM8hnzeWS0UU51Zp/zoywqijYD6Ny5M7feeivVqlXj9OnTzJo1ixEjRvDdd99hNpsL/0CKkT1tVhJ1lhZFdWzNmjVj6tSp1K5dm8jISN5//33uueceli9fToUKFQq62zek8vw6LG42m4033niDli1b0qBBAyBvn8c59a8Zt69XJj4+nuTkZFxcXIrkmEqrlStXsn//fn744YertkmbF77Tp0/zzTff8OCDDzJy5Ej27NnD66+/jqOjI4MGDcrTeVNezmejoqKoVq1aljIZz0FUVFRmELm8e/TRR4mPj6d3796YzWasVivPPPMM/fv3B/J2nirtXTDF2cZ5Oce+0aSkpPDWW2/Rp0+fzPO70tbeZTrY9dZbb113gr6ff/65SPfhwQcfzPy9YcOGODo68uqrr/Lcc89liVaWBqWhvcqa0tBmTz75ZObvjRs3JikpiU8//bRMBbtE6dGnT5/M3zMmD7/lllsys72EKKguXbpk/t6wYUOaN29O165dWbVqFUOHDi3BPRPCyJQ+cuQIX3/9dUnvSrkWFhbGlClTmD9/Ps7OziW9OzcErTXBwcE8++yzgHHOeOTIEb799lsGDRpUwntX/qxatYrly5czc+ZM6tWrx4EDB5g6dSp+fn7S3qLcs1gs/O9//0NrzaRJk0p6d3JVpoNdDz300HU7k+rVq+Pr68uFCxey3J+WlkZcXByVK1cu1H1q3rw5aWlpnDlzhjp16hRq3QVV0u1VnM9DYSnKNvP19cVisXDx4sUs32xGR0dfsz2aN2/OBx98QGpqaqkLqObG29sbs9lMdHR0lvujo6Ovitpn8PX1vSp6f2X5jDaKjo7Gz88vS5mGDRsW5u6XiKJos5xUr14db29vTp48WeaDXfa0WUnUWVoU17F5eHhQq1YtTp06VWh13mjK8+uwOE2ePJm1a9fy5ZdfEhAQkHl/Xj6PfX19r5qWIKO/vbJM9j44KiqKChUq3FAZRgD79u0jOjqawYMHZ95ntVrZunUrX331FZ9++qm0eSGrXLkydevWzXJfnTp1+PXXXzO3w7XPm/JyPptbm2dsu1HMmDGDRx99NPNLxKCgIM6dO8fcuXMZNGiQtHcxKM42tuccu7yyWCyMHj2ac+fO8fnnn2fJ2i9t7V2m5+zy8fGhbt261/xxcnKiRYsWXLx4kb1792b+7aZNm7DZbDRr1qxQ9+nAgQOYTKar0ilLg5Jur+J8HgpLUbZZcHAwjo6ObNy4MfO+Y8eOce7cOUJCQnLdpwMHDuDp6VlmAl0ATk5ONGnSJMux2mw2Nm7cSIsWLXL8m5CQEDZt2pTlvg0bNmS2TbVq1ahcuXKWOuPj49m1a1eudZYlRdFmOTl//jyxsbGlNuCcH/a0WUnUWVoU17ElJCRw+vTpcvEaKynl+XVYHLTWTJ48md9//53PP/+c6tWrZ9mel8/jkJAQDh8+nCXguGHDBipUqEC9evUyy+S3Dy6v2rVrx/Lly1myZEnmT3BwMP369cv8Xdq8cLVs2TJz/qgMJ06coGrVqkDezpvycj4bEhLCtm3bsFgsmWU2bNhA7dq1b6ghdcnJySilstxnNpsz59WV9i56xdnG0tcYMgJdJ0+e5LPPPsPb2zvL9lLX3vmazr4Me/jhh/XAgQP1rl279LZt23SPHj2yLIF5/vx53bNnT71r167M+yIiIvT+/fv1okWLdIMGDfTWrVv1/v37dUxMjNZa63///VcvWLBAHzhwQJ86dUovXbpUt2vXTo8dO7a4D6/QFUV75aXessyeNnvllVf0zTffrDdu3Kj37Nmj77jjjizLbv/xxx960aJF+tChQ/rEiRP6q6++0s2bN9fvvPNOsR5bYVi5cqUODg7Wixcv1kePHtUvv/yybt26deYqS2PGjNFvvfVWZvnt27frxo0b608//VQfPXpUv/vuu1ctOTt37lzdunVrvXr1an3w4EH9+OOPX7XccFlW2G0WHx+vp02bpnfs2KFPnz6tN2zYoAcNGqR79OiRZUWUsiy/bZaSkqL379+v9+/frzt27KinTZum9+/fr0+cOJHnOsuyomivadOm6c2bN+vTp0/r7du36wceeECHhobq6OjoYj++8qQ8vw6L2quvvqpbtWqlN2/erCMiIjJ/kpKSMstc7/M4LS1N9+3bVz/00EP6wIED+q+//tLt2rXTM2fOzCxz6tQp3bx5cz19+nR99OhR/eWXX+pGjRrpv/76q1iPt7S6cjVGraXNC9uuXbt048aN9YcffqhPnDihly1bpps3b66XLl2aWSYv503XO5+9ePGi7tChgx4zZow+fPiwXrlypW7evLn+9ttvi/V4S9q4ceN0586d9Z9//qlPnz6tf/vtNx0aGqpnzJiRWUbau+Di4+MzzzsaNGigFyxYoPfv35+5+l9xtXFerkvKg2u1d2pqqh45cqS+6aab9IEDB7J8nl55HVGa2vuGCXbFxMToZ599VoeEhOiWLVvqF154QcfHx2duP336tG7QoIHetGlT5n3vvvuubtCgwVU/P/74o9Za67179+qhQ4fqVq1a6aZNm+revXvrjz76qFxcNBZFe+Wl3rLMnjZLTk7WEydO1G3atNHNmzfXTz75pI6IiMjcvm7dOj1gwAAdEhKiQ0JCdP/+/fU333yjrVZrsR5bYVm4cKG++eabdZMmTfSQIUP0zp07M7cNHz5cjxs3Lkv5n3/+Wffo0UM3adJE9+nTR69duzbLdpvNpmfPnq07dOigg4OD9f3336+PHTtWLMdSXAqzzZKSkvRDDz2k27Vrp5s0aaK7du2qJ0yYUO4ulvPTZhnvy+w/w4cPz3OdZV1ht9fo0aN1x44ddZMmTXTnzp316NGj9cmTJ4v1mMqr8vw6LEo5vWazn59c7/NYa63PnDmjH3nkEd2sWTMdGhqqp02bpi0WS5YymzZt0gMGDNBNmjTR3bt3z/IYN7rswS5p88K3Zs0a3bdvXx0cHKx79eqlv/vuuyzb83LelJdz9QMHDui77rpLBwcH686dO+u5c+cW+bGVNpcuXdKvv/66vvnmm3XTpk119+7d9axZs7JcB0p7F9ymTZty7L8zzk2Ks42vd11SHlyrvXM7B8x+fVua2ltpnZ5rKYQQQgghhBBCCCFEGVem5+wSQgghhBBCCCGEEOJKEuwSQgghhBBCCCGEEOWGBLuEEEIIIYQQQgghRLkhwS4hhBBCCCGEEEIIUW5IsEsIIYQQQgghhBBClBsS7BJCCCGEEEIIIYQQ5YYEu4QQQgghhBBCCCFEuSHBLiGEEEIIIYQQQghRbkiwSwghhBBCCFGmBAUFZflp2LAhrVq1YtiwYXz22WdYLJYS27fFixcTFBTEnDlzCq3OkydPEhwczPTp0wtc17333ktQUBBnzpzJcn+3bt0ICgoqcP25CQoKolu3bkVWf3E/zpX2799PUFAQ8+bNK9bHFULkzqGkd0AIIYQQQggh7DFo0CAArFYrZ8+eZceOHezatYu1a9fyySef4OBQPi53Zs6ciaOjIyNGjCjpXRE5aNy4Md26dePjjz9m6NCheHl5lfQuCXHDKx+9vxBCCCGEEOKGM23atCy3d+3axb333svGjRtZuXIlAwYMKKE9Kzz79u3j119/5d5778XHx6ekd6fU+/nnn3F0dCz2x33sscdYs2YN8+bNY8yYMcX++EKIrGQYoxBCCCGEEKJcaN68eWa21z///FPCe1M4vvnmGwAGDhxYsjtSRtStW5caNWoU++OGhIRQs2ZNfvzxR1JTU4v98YUQWUmwSwghhBBCCFFu1K9fH4ALFy5kuV9rzYoVK3jmmWfo2bMnISEhtGjRgiFDhvDVV19hs9muqmvOnDkEBQWxePFiDh06xMiRI2nTpg0hISEMHz6cf//9N1/7Nn/+fBo2bEivXr0ICwu7bvmEhARWrlxJrVq1CA4Ovmp7REQE8+bNY/jw4XTu3Jng4GA6duzIqFGj2L17d772zV5//fUXI0eOpEOHDgQHB9OlSxcee+wxfv311xzLW61WPv74Y3r27JlZ/s0338wxQHTgwAFmzJjB4MGDadeuHcHBwXTv3p2JEycSHh6eY/05zdm1efNmgoKCeOGFF4iNjeXVV1+lU6dOBAcH07dvX3744Ycc6zp8+DDPP/883bt3p2nTprRr144BAwYwZcoUIiIirirfp08fYmJiWL169fWaTQhRxCTYJYQQQgghhCg3EhISAK4a8peamspzzz3Hhg0b8PX1pWvXroSEhHD06FEmT57Miy++mGude/fu5Y477uDs2bN06tSJmjVrsnXrVh544AEOHz6cp/2aNWsW06dPp0mTJnz99dcEBgZe92+2bt1KYmIibdu2zXH7H3/8wVtvvUVUVBRBQUHccsst+Pn58fvvv3P33XcXeXbbtGnTGDFiBOvWraNmzZr07NmT/7N33+FRVF8Dx793N5teSSN0ROm9hd6rCCr2gi8WEBUR5aeCgHRR7Aoqgoog9opKl47Se++Emk563b3vH0MSEhJINqRyPs/DQ3bm7uzszO7dnbPnnlutWjV27NjBJ598kut9Ro0axaeffkrNmjXp0KEDCQkJzJ07N9fj//nnn/P1118D0KJFCzp37ozWmu+++4577rknz4BXXmJjY3nggQdYtWoVLVq0oHnz5pw4cYKxY8fy008/ZWu7b98+7r33Xv7880/c3Nzo3r07TZs2JT09nfnz53Py5Mmrtp9xntasWVOg/RJC3HhSs0sIIYQQQghRbqxfvx6Ajh07ZltuNpuZNWsWnTt3zlbTKSoqiiFDhvDbb79xzz330KpVq6u2uXDhQsaOHctjjz2WueyNN97g66+/Zu7cucyYMSPP/bHZbEycOJEffviB4OBgPvnkE9zd3fP1XLZt2wZAo0aNcl3fvHlz/vrrr8xstgzr16/nmWeeYdKkSSxfvhylVL4eryD++OMPvvrqKwICAvj888+pV69e5rrk5GS2b99+1X3OnTuHs7Mzy5cvx9/fH4AzZ84wcOBA/vzzT0aMGJFtCOIDDzzA2LFj8fPzy1xms9n45JNP+Pjjj/nggw+YPn16vvf5n3/+oV+/frz55ps4OjoCsHLlSp577jk++eQT7rvvvsy2CxYsICUlhVdffZUnnngi23aOHz+Oh4fHVdtv1KgRJpOJrVu35nufhBBFQzK7hBBCCCGEEGWazWYjJCSECRMmsHXrVrp3787tt9+erY2DgwM9evS4qnh5hQoVGDVqFGAEQ3LTvHnzbIEugGeeeQbICkjlJjU1lRdffJEffviBHj16MHfu3HwHugAOHz4MQM2aNXNdX6dOnasCXWAE+vr06UNISEi+M88Kavbs2QCMGTMmW6ALwNnZmfbt2+d6v3HjxmUGugCqVq3KgAEDgKuPZZs2bbIFugBMJhPDhw8nMDCQVatWFWif3d3dGT9+fGagC6BHjx7Url2b8+fPc/bs2czlGcNg27Vrd9V2atWqRUBAQK7b9/f35/z588TExBRo34QQN5ZkdgkhhBBCCCHKpDp16ly17P7772fy5Ml5ZjMdPHiQDRs2cP78eZKTk9FaZw59PHXqVK73yS1w4+Pjg7e3d661mwASExMZNmwYGzduZODAgUydOhWz2ZzPZ2aIjIwEwNPTM882qamprFu3jr179xIVFUVaWhpAZpDr9OnTuR6nwggNDeX48eN4enrSt2/ffN/PYrEQHBx81fIaNWoAEB4eftW66OhoVq1axdGjR4mNjc2srZaens6lS5e4dOkS3t7e+Xr8Bg0a4OPjk+vjHzlyhPDwcKpUqZLZdt26dUyaNImRI0fSokULHByuf/ns5eVFaGgoUVFReHl55Wu/hBA3ngS7hBBCCCGEEGVSxsyLKSkpHDp0iBMnTvDjjz/SrFkzBg4cmK1tamoqY8aM4a+//spzexlBr5wqVqyY63I3NzcuXbqU67r58+eTnp5O586deeONN+waShgfH5/5OLk5fPgwzzzzDOfOnctzG3k9p8K4ePEiYGRlFeR5+fn55Rrwy3h+OYvU//XXX4wfP57ExMQ8t5mQkJDvYNe1zmPOx3/qqafYvn07W7Zs4bHHHsPV1ZVmzZrRuXNnBg4cmOswRiAzcy8uLi5f+ySEKBoS7BJCCCGEEEKUSW+++Wa223PnzuXtt99m8uTJBAcHU7ly5cx18+bN46+//qJ27dq8/PLLNGjQAE9PTywWCydPnqRPnz55Po7JVPDqLx07dmTbtm1s3LiRZcuWXXP7eckInOQWsNJaM3LkSM6dO8eDDz7IQw89RJUqVXBzc0MpxXvvvcfs2bPRWhf4cYtKQY7juXPnGD16NACvvfYaXbp0ITAwEGdnZwAefPBBdu7cWaDnV5DHd3d3Z/78+Wzfvp3Vq1ezZcsWNm3axMaNG/n8889ZuHBhZkbalTIClHkFw4QQxUNqdgkhhBBCCCHKhaeeeooOHTqQlJTEzJkzs61bsWIFYMyK2KlTJ3x9fTPrd505c+aG70uDBg344osvcHZ2ZtSoUSxfvrzA2/D19QXItf7TiRMnOHHiBA0bNmTSpEnUrVsXd3f3zEyronhOGTIypM6cOVNkwbS1a9eSlpbGoEGD+L//+z+qV6+eGejKeOyippSiZcuWvPzyy/z000+sX7+eO+64g4iICN5///1c75NxrnLOBiqEKF4S7BJCCCGEEEKUGxnF5hctWpRteF9sbCyQ+1C2JUuWFMm+NGnShLlz5+Lk5MRLL73EypUrC3T/unXrAnDy5Mmr1mUEVXJ7PjExMfz777927HH+BAYGUqtWLWJjY4vs2F3rfG3dupWIiIgiedxr8fX1Zfjw4QAcPXr0qvXx8fGEhYVRqVIlqdclRAmTYJcQQgghhBCi3Khfvz49evQgPT2duXPnZi7PGHL23XffZWu/dOlS/vjjjyLbn2bNmjF37lwsFgsjR44s0AyCLVu2BGDv3r1XratevTomk4lNmzZlK6yfkpLChAkT8qwldqMMHToUMIaSHjp0KNu6lJQUNm7cWKjtZ5yvRYsWZavZFRoayoQJEwq17fz47rvvcs0eW7t2LQBBQUFXrdu7dy9aa1q1alXk+yeEuDap2SWEEEIIIYQoV55//nn++ecffvnlF5599ln8/f156qmnWL9+Pe+++y5Lly6lZs2anDp1in379vHEE0/w5ZdfFtn+NG/enDlz5jBkyBBGjBjBzJkz6dKly3Xv17JlS1xdXdmyZctV63x9fbn33nv58ccfufPOO2nTpg1OTk5s374dq9XKwIED+fXXX4vg2Rjuuusu9u3bx4IFCxg4cCBNmzYlKCiIsLAwDh06RKVKlQoVROzWrRu33XYb+/bto1evXjRv3pyUlBQ2b95M3bp1adasGTt37ryBzyi777//nokTJ3LrrbdSq1YtzGYzJ06c4NChQzg5OfHss89edZ/NmzcD5OvcCiGKlmR2CSGEEEIIIcqVunXr0rNnT1JSUvjqq68AaNWqFd9++y1t2rTh7NmzrF69GovFwscff8wjjzxS5PvUsmVLPv/8cywWC88//zzr1q277n3c3Ny44447OH36NHv27Llq/cSJExk9ejRVqlThv//+Y/v27bRt25ZffvmFSpUqFcXTyGbcuHF88skntG3bluPHj7Ns2TJCQkJo0aJF5nA/ezk6OrJw4UIeeughHB0dWb16NcePH+fRRx/lq6++yqy3VlReeOEF7rnnHpRS/Pfff6xevZrk5GTuu+8+fv/9d1q0aHHVff7++298fHzo0aNHke6bEOL6lC5N03MIIYQQQgghhMh08OBB7rrrLh599FHGjx9f0rsj8rBz504efPBBnnrqKV5++eWS3h0hbnqS2SWEEEIIIYQQpVS9evXo06cPv/zyC5GRkSW9OyIPn3/+OZ6engwZMqSkd0UIgQS7hBBCCCGEEKJUGzVq1FUF90XpceDAAVatWsXQoUPx9vYu6d0RQiDDGIUQQgghhBBCCCFEOSKZXUIIIYQQQgghhBCi3JBglxBCCCGEEEIIIYQoNyTYJYQQQgghhBBCCCHKDQl2CSGEEEIIIYQQQohyQ4JdQgghhBBCCCGEEKLckGCXEEIIIYQQQgghhCg3JNglhBBCCCGEEEIIIcoNCXYJIYQQQgghhBBCiHJDgl1CiDLj448/pk6dOiW9G0IIIYQQZZ58rxJClGcS7BJCCCGEEEIIIYQQ5YYEu4QQQgghhBBCCCFEuSHBLiFEmXPkyBEeeeQRGjduTOfOnfnqq69KepeEEEIIIcok+V4lhCiPJNglhChznnvuObp27cqsWbPo1KkTb775Jj/99FNJ75YQQgghRJkj36uEEOWRQ0nvgBBCFNQjjzzC4MGDAejYsSNhYWHMmjWLe+65B5NJYvhCCCGEEPkl36uEEOWR9F5CiDKnd+/e2W737duXCxcuEBoaWkJ7JIQQQghRNsn3KiFEeSTBLiFEmePr65vr7bCwsJLYHSGEEEKIMku+VwkhyiMJdgkhypzIyMhcbwcEBJTE7gghhBBClFnyvUoIUR5JsEsIUeYsW7Ys2+0lS5YQFBREYGBgCe2REEIIIUTZJN+rhBDlkRSoF0KUOd9++y3p6enUrVuXZcuWsWbNGqZOnSpFVIUQQgghCki+VwkhyiPpwYQQZc6sWbNYvXo1zz77LGvXruXVV1/lvvvuK+ndEkIIIYQoc+R7lRCiPFJaa13SOyGEEEIIIYQQQgghxI0gmV1CCCGEEEIIIYQQotyQYJcQQgghhBBCCCGEKDck2CWEEEIIIYQQQgghyg0JdgkhhBBCCCGEEEKIckOCXUIIIYQQQgghhBCi3JBglxBCCCGEEEIIIYQoNyTYJYQQQgghhBBCCCHKDYf8NoyOji7K/ciVl5cXMTExxf64Ioucg5In56DkyTkoeXIOSp6cg2vz8fEpUPvCfK+Sc1H85JgXLznexU+OefGTY1785JgXP3uPeUG/V+WmVGd2mUylevduCnIOSp6cg5In56DkyTkoeXIOSg85F8VPjnnxkuNd/OSYFz855sVPjnnxK8ljLmdbCCGEEEIIIYQQQpQbEuwSQgghhBBCCCGEEOVGvmt2CSHEjZKergkPh7BwSEkBq9VY7uEBPj7g4w0uLqCUKtH9FEIIIYQQQghR9kiwSwhR5ELOaLZuhf0HNPsPwPkLoPW172OxQL26mlq1wNMD2rWFunUUZrMEwIQQQgghhBBC5E2CXUKIIhEVpVm8FP5ZpTl6zFhWoQJ4ehrZW1FRxjKljGBWtWow+DFFVLTm518gIREuxcDfiyE1Fb5eAEppPNw1QUFQpTJUqgQeHgpPD2Pb/v4QGGBkiElWmBBCCCGEEELcnCTYJYS4oU6e0vzwo2b5CkhNg0YNYeBdsGs3nDgJ0dHQtAncO1DRsAHUqKE5elSxe49mwULNsWMQn5B9mw4ORlAsPR1i44x/h49krL06RczZGQL8NVWrQvXqUKOaMv6vDm5uEgQTQgghhBBCiPJMgl1CiBsiIkLz+VzNkmXg5AS9esKd/aFePRObt2h279WMHKHo2hkSEjSL/tJ88BGcPg1Wm8Zshrp1oEYN2Lc/+7bT0+Gv3xVeXvDNt5qV/0DIGUhLM4JgWoPZDDVrQOXKRs2vmFijzdatkJpmBMSUgurVNPXqQr16ivp14dZbwcFBAmBCCCGEEEIIUV5IsEsIUShpaZqF3xlBKJsVHn4Q7hkITwwBR0eoWVNjNmumTYLTITBmnObAwaz7OzhAUCBMft0IjO0/oNm5y8jOstmMf8nJxvBHpRSxsToz0AVGAAtgwB2wew+sXWcsa9wIBvRTdOigSU9TnA6BY8fh4CHNlm2wZJkRAHNzg1YtNG3aKDq0A29vCXwJIYQQQgghRFkmwS4hhN2OHNVMe1Nz/Dh06QzNm8GAOxSbt0Cd2prde6B3P43VagSVEhI0Pj7QsoVRcP7WWtCsqUIpxQ8/aVautvH8syYa1Idp020kJcHUySYAPpppw9lZ89wzJp4eolm/URMeBgcPGcMaR71oQmvN4Kc0FXwgMhLe/0jzwcfQpLGma2fF7X3hsUeN7YWHG8Xyt23X/LsJ1qwzssvattH07qno2EEyvoQQQgghhBCiLJJglxCiwKxWzYKF8NU8I3h11wDY+B+sWQu1b9VMmGQMPXRzA6vVyLSqVQuqV4NRIxUODooZ79qYvwD+/N3YZkSE5vz5rMeoWVNhtWbdTkgEB4vxt4ODYuYnmqaNYcJ4I3j112KNn6/mxAk4ro1MsP79jH3Ytj1H4KuLoksn6NJZ0aWzQmvN8ROwYqVmxUrYsFETEAAP3Gdsw8eneI6rEEIIIYQQQojCU1rrq6s75yI6Orqo9+UqPj4+JfK4Ioucg5JX2s5BdLRm0lTNtu0QVBEiIo0hhRYHeGMqJCQo5n+jOXESXF3h7juNYvTr1sMHH2t++1nh56s4ekwTEwMtmts3c+Ku3Ro3N7jtVkV8vKbPHZpnnlb076c5eAgWfgc7dxltZ0yHypUVq9fAqjVGJppSRibaHf0UnTuCo6OxDzabZvNW+P4HzfYdxsyOw59xpXevJMn0KkGl7X1wM5JzcG0+BYyKF+ZYyrkofnLMi5cc7+Inx7z4yTEvfnLMi5+9x7yg36tyI5ldQoh8sdk0e/ZqJk6BqChj2YWLRmH4ju2NwNZbb0NEpCaoItSvBwcOQoP6ijNn4dARzY/fgp+vYus2zboNmhHPGUMYd+4yAlQPP2gEk44e01y6BK1aGrcTEowhhs7OWcGmpk2y/nZ3V/z6I1gcwdPThE1rduzUNG1izAL54Ux4YTjUrg3t2ykcLbBqDSxZqpk0RePpCX17a+4coKhWVdE2GNoGKw4dNoruT5+RyLffwwvPQ+tWEvASQgghhBBCiNLMVNI7IIQo3aKiNAsWau64SzNipFFQ3t/PWNewPjz0AOzYCctWQPQl6NEdhg2Fo8dg8gTo0B7Cw2HbNnBzMwJFISHGkMeMhK5NmzVffJWVZPrHIs3UN7Juv/eBZvCTWbdnfmLjnfdsmbcPHdKkW8HncnH5po1h0uuK999RvPe2IiEBXh6teX2CsZ35CzW394HvvlF8+J6iVUv49Xd4eJDmlTE2tm3XaK2pW0fx7gzFpzM90Bpeelnzzns2kpLylRArhBBCCCGEEKIEyDBGcU1yDkpeSZ2DEyeNINfqNUb9LYCgICNw5eJiLLPZICUFWreEjh0gJtYoON+4UcGGJmqtSUvLGkoYEaG5FAO31jJub9mqiYqGPr2M27Pn2EhOhheeN+L1//eEjUpBMH2acfvb7zV160DzZkb7v/628fsiOHMWkpKMx3RwgEceMrLJXFwU0Zc0fyyC337XREZBrVvgsUcVXTqDn18FQkOj+OIrzbffQ+XKMHGcom5dyfIqLtIXlTw5B9cmwxjLNznmxUuOd/GTY1785JgXPznmxa8khzFKsEtck5yDklcS5yA9XTPgbk1KilGc/WIo+PrC4EGwZh0cOgwJCVClCiTEw88/KJycSi7wc+So0Y3Vvk0Z+z5Qc9cAGPqUCavVGIrYu5fCxxs++UyzZBmYTEawbuaH0LRJVpJraqpm1Rr47nujaH2NGvDcMHdat0rAbFbs3qOZMk0TFQWjX1H06ikBr+IgfVHJk3NwbRLsKt/kmBcvOd7FT4558ZNjXvzkmBc/qdklhChx5y9ovv1OM3KEMVuif4Dm9GkIDQNnZ2PGxTlfQmwsNGkML76gqBgIFgslGugCI8iVwcFB8edvkJpq3A45Az/9YtQQu6Wm4rlnwNdXs2UruLuDv5/ix580JrOmdUtFtWqKPr2gVw9YvwG+/Frz8uh4alSHxwdDty7wxeeK1ydpJk/TnDipGfqUwmSSoJcQQgghhBBClAYS7BLiJpecrFn4neabhWC1QfeuGi9viIoER0fo0wuWLIMvvjJmToyNhSFPqswhhqWR2axwcTH+rllDsXiRkckFsOIf+OZbWDgffCsofvtD89U847mD5pGHNI89qnB2VnTuZAzP3LHTjY8/iWfCJM3Pv8CI4UYtr49mar75Fi5c0Iwfi8zWKIQQQgghhBClgAS7hLiJ7d6jmfam5vx5aN8WDh6GQ0dg9hwNGmrUNAq3OzvDh+9Bi+Zlc06LK2dxHHAHVKuqqF7NWBYapqldGy5dgrp1Yf438NdizdjRENzayNjq2cOJ5s0SWLrMODZDhmn69IZhQxSVK8PHszTJKZrJE0o+y00IIYQQQgghbnZl88pVCFFoWmumv6WJi4WZHyremm7izv4w61Oj+Hy6FaKiYODdMPAuaNSwfARxnJwUwa2znktggKJZU2NmxhdHKNzcjMDXK2M0u/dmzfhoMilu76v47hvFY4/CqlXw4KOapCR48QX49z8YPVbLTI1CCCGEEEIIUcIks0uIm0xUlMZsBi8vRYvmmtMhcEtNzchRmm3bs9oFt4IpkxSuruUjyJWXQY8owHiOkVGahARo1RL27YfnnofatW08cF8SvXpolDKOx9CnFP37aT79XDP3S02VysbMjt9+D6Ne0bzzFuX+uAkhhBBCCCFEaSWZXULcRPbt1zz6f5rxE43so5EjFE8MhvsfJjPQFdwaOraHAQPKf6ArpxrVYfpUxZSJil9/VFSqBEeOwJRpidx1j+a/TVmZXkFBiskTTHz0vkKZjDpgjRvB/gNGhldKimR4CSGEEEIIIURJkMwuIW4S/6zWTJmm0TZwcoKUFM2szzS//masVwpGvQh3Dbh5Y+Amk6Jjh6zb7dpo1q6D225z4N//0nl5NNSobmPUi9CsqXGcmjdTzJsL33xrFKt3dIQdO2HcBM0bU8BiubkChkIIIYQQQghR0m7eq1ohbiLzFtiYMEnTsAF8/hm8MUUx/5usQFeFChAQALVvk8DMlUaOMPHlHMWcz7wY9Iix7NRpGPu6UfMsg5OT4snHTcybq6hT21j23yYYM05jtUqGlxBCCCGEEEIUJwl2CVHOnT1r48uv4NZb4O03wWYzhtzN/8ZY37gR/PKD4oeFivr1JNiVk4+PcUzuvhOqVzP+/9+LcPac5mKojeEv2Dhw0AhoVa+u+Oh9xeiXFU5OsGkzDHtOk55uu9ZDCCGEEEIIIYS4gWQYoxDllNYaqxUqV1bcc7em3+3w4ceweCnYbEZwRikYN0aG2uVHQICJb742jltICDz6f0ahf60hMlIDikuXNO7ucEc/Rbu2MOJFzcFDcO+D8NF7mmrV5DgLIYQQQgghRFGTzC4hyiGbzcZzI3TmMLohTyouhipWrTECXAC9e8K8L6BSJekG8ksphVKKypWhW1do1BBcXWH8RPjwYxtvvGVMALDiH423N8z/yij4HxEBgx7XfPeDDGsUQgghhBBCiKImmV1ClDNaa956B/bshXr14PVJcOSI5mKoUTzdaoXb+8LolxUmk2Qa2cPBQTFhnHHsoqNtDH4KfvoF3N3A1xcmTTGK1Q95QjFjuub1SbB2Hcz61Ch4/9qrSJaXEEIIIYQQQhQRSekQohxJT9d8OU/z92JoGwwXL8L6DXAxFGrWgNRUaNkcRr+MBLpuEBcXRb260LyZEej64F14aSQkJMDosZpnhsOAO6BNMJgUnDgBg5/SfPu9ZHkJIYQQQgghRFGQzC4hyonYWM3jQzShoVCnNmzaAmazMWyxUhCcPAUP3A/DnzGG4okbw9lZMX1q1u0tW2HDRk1EBNx/L6xbD6NegeBWUOtWOHUK6teDTz4zsrzGvQZVq8j5EEIIIYQQQogbRTK7hCgnXF2NoJanJxw+AiYTeHuDbwU4dx4eelACXUUlo5YXwPxvNOHhxrH/8Wdo2QI6d4K9+yEyEipXhmPHYdhQOHMWHn9K88efGq0ly0sIIYQQQgghbgTJ7BKijNu3X+PkqImNM2YJTEw0srlqVIdatWD5Chj0KAx9UgJdRU0pxTtvQVwceHnBnC80P/xkzNjYqyf076eoUhmGDTdqes2YDvPmw9vvajb+awwvrVBBzpEQQgghhBBCFIYEu4Qow+LiNC/9T5OSahSe9/SE9HRj+GJyihHoGvwYPPm4BLqKi4uLwsXF+DstTePuDl6ecPw4NG4EO3ZCowawchW8PhHmzIZ16xSzPtM89oRm9CvQoZ2cKyGEEEIIIYSwlwxjFKIMS0vTODkZwZQa1SE2Fu4dCK1awrlzRpDrqSdMEugqIffeo3jmacU3XyveflNhMsEfizS798Lzz0JCIvzvVahSRTPnMwjwh9Gvad56x0ZiogxrFEIIIYQQQgh7SLBLiDLGatV8PMvGr7/ZeOARiE8w6kOdOg29expD6DZthiFPKh7/PwlylaSqVRQD7lA4OCiiouDZ5zWBgRAeDtt3wqgX4eRJo4D9lDfg5Zdg0CPw92J46mnN8RMS8BJCCCGEEEKIgpJglxBlTHo67NkHv/4OSUlGAfpTp6F5M4iNg2UrYNhQxf8NkkBXaRIbBympRjBr5AjFzp3w9rtgsxnrT5+Gp581JhZ4/x0j62voM5rFSyTgJYQQQgghhBAFIcEuIcqImBhNcoqNjf/BB+/AA/eBszOER8CEcUZ213+b4LlnFI8+LIGu0qZ1K8UXsxXe3ibuvhPuuxcaNjDWdeoIaWng4wNfL4DZc2D6FGjUEN54S/PGWzaSkyXoJYQQQgghhBD5IQXqhSgDUlI0zzyvQUPIGc3wZ2HRn5CcDEOehNVrYM06GPGc4v77JNBVWmXUTtu9BxYshCkToW8fRZvWcEtNzbz54O8PIWfghVEw8nkj4DVvPhw6pJk6CapVk/MrhBBCCCGEENcimV1ClAFWKziYjSCIUvDjT3AxFCZPgEOHjUDXiyMk0FVWNG+m+PpLRZfOJvr0UiQnG7NmengY9byaNIZba8H0GRASAtOmQPQlePJpzYp/JMNLCCGEEEIIIa5Fgl1ClGIb/tWsWZPCcyM0p06DxQG0hksx8MYUWL4S1m+AUS8q7hkoga6y5JaaxvkKC9P835Oab79XTJ4A7m6w8V84dtwY1rj/ADRppPhqjqJObZg0RfPJZzasVgl6CSGEEEKUdTarldA9/3JqzW+E7vkXm9Va0rskRLkgwxiFKKXS0zUffqyJjIzHbIaAAAgNBUcLvPUGfPs9bNsOr/zPmPFPlE1+fjD4MUXXLlAx0MSvP9l48X9GkCstDd6eBV5eirQ0zR23Q61axrk/cVIzcTy4u8u5F0IIIYQoi0I2Lmb7Z+NJjLiQuczVL4gWw6ZQrf3tJbhnQpR9ktklRCmjtcZm0xw7BnFxxux8WsPFi+DkBDPeNGo4bd8B48ZIoKusM5kUDz2gqBhonMd334emTeCuAcbMmz/9DKvX2nhmuGbqdOjZXfHq/xTbtsPTz2rOnJUMLyGEEEKIsub46t9ZP3VItkAXQGLERdZPHULIxsUltGdClA+S2SVEKWK1aqZNN4IXG/4FH28YeLcLc+Ym4ewMb06Dzz43hrhNmajo3EkCXeWJ1arx8DCytZ55WhEYqJk9R3PkKJw9B/fdAw3qQ8MGCj8/zbQ3jYDXm9OgcSN5LQghcrBZMZ/bjkoIR7v5Y63cAkzmkt4rIYS46dmsVta//z8gtx8tNaDYPvt1qrTpjcks/bYQ9pBglxCliNms8PUzsrpuuxUefADe/yAZZxeYNB4+nGkEPd6cpmgTLMGN8sZsVowckXVeGzYwsrx27wEXF/jpFzhyVNO8mebHn+HJx+GPRTDyJc24sdCti7wmhBAG89HlOK2ejin+YuYym3tFUrqOwXpbrxLcMyFEaaKtNhK2hJGWEEaKmw231gEoswz+KWrh+zcTH3buGi00ieHnCd+/mcDG7Yptv4QoT6QnE6IUiIjUnDun2bxF88iDlxdqGDMWklNgwnh4+324cBHenSGBrpvF/gMQFWXMummzgZeXseyrr42ZGz+aCS2aQ7168PpEzXc/aLSWYY1C3OzMR5fj/OdI1BWBLgAVH4rznyMxH11eQnsmRPljtWp27DRmS96xU5epCWRilpzmcLtfOfnAcg49sZSTDyzncLtfiVlyuqR3rdxLigq9oe2EEFeTzC4hSpjWmtfGaSIjISYG+vSBvn1g8lQwm2Hi625MfyuexER4/x1FwwYS6LpZPPqw4r57wMlJ4e9vY+QocHCASkHQuDG4OBvZXi1bQKeOMOtTzcWLMGK4kSUmhLgJ2aw4rZ4OaHL2AgqNRuG0ZjqJtbrLkEYhCmntOs0HH2vCw7OW+fvDyOcp9aUmYpacJmTY2qtG0aVdTCRk2FqqfdYZr77VS2bnbgIuFQJvaDshxNUks0uIEqaU4on/g8go6NwJWreEKdOMwvQvjYTJUxOwWmHmhxLouhk5ORnnXCkFGnwrQMgZ8PaCjh2gahXYsROOH4c7bodffoMJkzSpqWXnl2UhxI1jPrcdU/xFFGBTJo5UCmbbrXdwpFIwNmVCoTHFXcR8bntJ76oQZdradZqxr2cPdAGEh8PY1zVr192Yz2Gb1Uronn85teY3Qvf8i81qLfQ2tdXGhYlb8y4XBVyYuBVttRX6sUTu/BsE4x5QGa76WSKDwtW/Ev4Ngotzt4QoVySzS4gS8t9mzaFDGmdnhbOz4uMPIDlZM+oVY/0Tg2HmLPDzV7w7AyoFSaDrZtagvuLnH4zaXR/N1HzzLaz8B+LijSGOEZHwz2oY0A/+XAwvj9ZMnwqurvK6EeJmohKMK+9dNXvxU4fxXHIPylznHX+B+zZMoenJ5ZnthBAFZ7UaGV3X8uFMTYf2hcu0Dtm4mO2fjc82W5+rXxAthk2hWvvb7d5uwpYw0i4k5t1AQ9qFRBK2hOHetqLdjyPyZjKb6fjiOywZ8zBGwOvK15Pxmmnx9GQpTi9EIUhmlxAl5MefNF98ZQw927NXk5ameW0ceHrCnQNg3nyoUgW++dpLAl0CAG9vhZOT4sUXFL4VICwcLA7QvRukpkBaGiz6G3r3gl274fmRmuhoyfAS4mai3fzZVbMXc3rP5JJb9uEvl9wCmdN7Jrtq9kK7+ZfQHpYe1nQb+/ZGs3FzBPv2RmNNlyyWnNKsVpaF72fh+W0sC99P2g3IKioPdu/hqoyunMLCjHb2Ctm4mPVTh2QLdAEkRlxk/dQhhGxcbPe208OSbmg7YZ9aXe+i47g5uPplDyi6+gfRcdycQgU0i5tNw3GrYle64rhVYStjXz+t6ans3f0Fa9e/zt7dX2BNT72h2y+KDE1xfZLZJUQx0lqTlKRxcVFUqwpbtxmBiZ7d4X+vQpXK0KsnzJ4DTRobsy76+ZqIji7pPReliYOD4rtv4NhxzQcfwT+rwMcHoqNBKWjdCnp2V4x9XfPM85r334YgCZgKcVNIq9SCnzreZtxQOX7TVCbQNn7qOIFXfbxu6l88N2+NYGmAJ4m3BmQucz2XQJ+wWIJb+ZXgnpUeP17YwWan6ji4N81ctjzmIsEpp7k/qHnJ7VgpEBl1Y9vlZLNa2f7ZePIeZ6jYPvt1qrTpbVfmj0OAyw1tJ+xXrf3tVGnTm18fbkJKbBROnhW486vNZSqja59VsSjVTMwVQzK90AxwtNLQXPqjXhv/m8asA58SptIzlwVsm8Bz9Z+hfduxhd5+UWVoiuu7mb/nCFHsJkzS3HkPTJuu+eU3uP9e6N4VXhljZOXUqQOffQ4d2hmzLrq7S4BC5M7VVdG4kYnPP1U0aWwEupydjSyv7l0huLWibx+4dAmeeV5z4kTp/7IhhCi8kzhwyS3g6kBXBmXiklsgJ8vC7502K+YzW3A49DfmM1vAdmN+Cd+8NYJf61ck0c812/JEP1d+rV+RzVsjbsjjlGU/XtjBNq9WmJ0Dsi03OwewzasVP17YUUJ7Vjr4Vrix7XIK37/5qoyu7DSJ4ecJ37/Zru27tQ7AEuR6rXJRWIJccWsdkEcDcSOZzGZMFifjb4vTDQ90FeWMofusigWpZmJyLI8BFqSa2We9MdcyRfUcNv43jQkHPiaM9GzLw0hnwoGP2fjftEJtvygzNK9UlmeFLUpl4JuOEOVHzZqw4V9YuhwGPwa33Qajxxo1lypXgiVL4a4BMHKEwsFBAl3i+hwcFB+9bxTK/eY7o47X0WNQo7qN9RuM4Nfu3fDcC5q330QmORCinIvL5/fb/LYrKeajy3FaPR1T/MXMZTb3iqR0HYP1tl52b9eabmNpgKdxw5SjPzQpsGmW+XvSMt2G2aH0/yZss1oJ37+ZpKhQXCoE4t8guNAXymlWK5udqmMGVI6gqVImtLax2bEad1utWMpA9om22kjYEkZ6WBIOAS64tQ5AmQt3bps0NmZdDA8HlBVTwGZwCYWkQGxhwaDNBAQY7eyRFBV6Q9vlpMwmgia2MmZjzL1cFEETWxX6OAFYbVb2hm4iKjGMCq4BNApsg7mMzQRrtWp27zEy9XwrGOe1rMx6XZQzhto0LErNOJdXz/8LmkWpZuo7p1/V3RbE2nWaDz+y4nUmDC9rEjFmF2KqBvDCCHOhnoM1PZVZBz7N2t0rXX5fzDrwKW1avYzZwbHA2y/qDM0Ma9dp3v84nShTVj9UwRbMi887lPpZYYuaBLuEKGKHD9tYtwH+b5DiyFFITYVnhykCA2H8BI3NBt7ecO48PPO04uEHL8+8J0Q+mc2Kbl0VnTpqPp+r+fZ7OH0aLBbY+C+8+AJ8OQ9eeEnzxhQj60sIUT555PPtnd92JcF8dDnOf47EphRHKgUT6+qPZ2I4tS5sw/nPkST3/8DugNfBgzHZhi5exaRICHTj4MEwGjbysfMZFI+iGhqzKupQtqGLOSllwsE1iFVRu+jt38DuxykOMUtOc2Hi1mzF2C1BrgRNbIVX3+p2b9dsVox8HsbP/RtLq/Eot6xzoBOCSNs6hRee6md3QMSlQuD1GxWgXW68+lan2medrz4+FQt/fDKsP/U3szaNIyIx6/j4uQbxXJupdKzRr9DbLw5FGSwqahkzhuaUMWPotMmFew4nbSrb0MWrKWIut6tl53DGtes0P406zciIbfhYs16n0WGu/DiqJbxb3e7ncGD/gmxDF6+ijAyvA/sX0KjJkwXefkEyNAMbtyvw9sE4PuPn/o2l03gcr+iH4hKCGD93ClPoV+pfp0VJgl1CFLGJU+HMGTh1WrN+A4x6UeHkCBMna7Q2ZteLj4dJryu6d7t5OyNReA4OimeHKerWtbF6DaxeA1YrTJsOTk7Gv1fGaF4fB927ymtNiPKopknjhb48pCS397nG63K7UslmxWn1dHbV7MnPucwmee+GqTRZM53EWt3BjuyQmMT8DYXMb7vrKaqMkIyhMTkzBjKGxhSmuHVEWv6Kkue33bWkpaWyZcM8LoWdxjugOq07DMZiKXgGRW5ilpw2MpdyvNTTLiYSMmwt1T7rXKiAjqnaYhy7DAGd/QGU60UcuwzBVG0uYF9Ax79BMK5+QSRGXCT3rBCFq38Q/g2C7dp+Bq++1XHvXoltHWaQkhiJk6svLde/gtnRUqjtghHomrTqKXLuf0TiRSateooJ3ebeuICXzYr53HZUQjjazR9r5RZ29Q85FXWwqChdOWOoIo3azuvwJIpYKnAkuRMaS6FnDC3qTGKrVbNs0mmGhq7DZlJcbF2RJH9XXMIT8d8WytDQdfwwuRMdllW36zlExZ6+oe1yKuoMTatV8/aPf2PpfPVnAa4XsXQewjs/zaFDe/sD71dKSU5l5bx1xJ2PxKOSLz0Gd8LJ+cb010VFgl1CFIGkJE1KijF73vtvw4GDULOmonMniI2FN97SNKgPJ08an8XvvKVo0rh0fliKsqdbFxPdusDuPTaeH2ksS0kx/rm6GrXj4uLgrgHymhOivDEpGOBoZUGqmYxhElmML8MDHK2FGlKSqQguMM3ntrPHvzFze8+8at0lt0Dm9v6YIcuGU+fcdqxVWxd4+16u+du//La7lqLKCCnqoTF+lvwVJc9vu7ws+20KZ76ZjUuiMQvmJeDgzMlUffRpHnzivUJtW1ttXJi4Ne9DBFyYuBXPXlXtGqpntVmZtWmcsbGrhj8Z5+CTzeNpV62PXUP2TGYzLYZNYf3UIWgU6oonYtyGFk9PLvSQ1czsQN8L4GssO//kr4XODsx2fK5S+ONzpSIb8nxlsMhkpWajw7hWSCYxypmTe+ugbeZCB4uydtiKshqz/ylrqlGfsJDHJWPG0GYuv3Pf6Qv4xHtcXnOBaPe5/FQ9iJ1hd7F7DzRvZt9jFHUm8e6dNvqc2EZIz+psH9uGxCD3zHWuF+JpMW0TvVZtY/fOqjRvWfDjVcEzf8Hu/LbLqagzNHfutpJUx/gsyDkoSCmN1orE2q+zc3cfWjYvXNjnx2m/EvTtBarFZbyOzrPl4zlceDiI+8cOLNS2i1LpL0YgRBljs2mGPad5YqgmPNzGqjWKrl0UNarDxYvwwUeaW2sZdZW8vOHzTyTQJYpGk8YmnhkK9euB5+USNcnJxvDGd97TLFio0bqUZncIIezW0KwZ5GjFK8dyL2DQDZody3x0OU5zu3Pgt4dZt2IEB357GKe53TEfXV6o7eqEcH7qMN64kdtsksDP7cehE8KxR716XriGJRjFZnJj07iFxlOvXs6jVzAZGSHhOXYzIyNk7Tr7z8GVQ2O0yUR8g3ZEd7ib+Abt0CYThS1e3q1CXdKTLqK1Ldf1WttIT7xAtwp17X0KLPttCuGff4Jzjgw650Qr4Z9/wu/fvmb3tgEStoRlG5qXm7QLiSRsCbNr+3tDN2Ubmnc1TXjCefaGbrJr+wAnrX1ZmjKbBFvFbMvjbUEsTZnNSWtfu7cNRVs4uziOD2QNeVZXBLoAVHwozn+OLFR/lBEsqtdhFx2/jiXozWZ4vdKWoDeb0fHrWOp12EVYmNGusM/BdW4PVJIxdadKisJ1bo9C96WRUUaga8j+OLzj3bOt8453Z8j+OJq5/G73jKGQlUmce1ATjExibXcmcdzmMOK6+bP+o+4kBrplW5cY6Mb6j7oT382fuM32vY/rNxhEgHa41u4ToB2o32CQXdv3bxCMs3vANbfv7B5gd4bm7gubUW4Xrgp0ZVBKo9zOs/uCfZ8FGX6c9it1Z8fhFZf9deQV507d2XH8OO3XQm2/KEmwS4gbzGRSNGsKcbHw828w90vN6dOaT2cb9ZQAjh03AhCff6qoVk0CXaLoPPSgic8/NfHbT8asjVobM38CzJ6jmfWpBLyEKI8amjWjndNxS44GwC05mtHO6Tcs0LVp6bPcow4zJTGeryITmJIYzz3qMJuWPluoi7Tj3rWMoYvXmE0y2qMSx71r2bfvJk3/FZ8bN3IGvC7fvmPlHMyFGOaZc/hQHed/aOX8E3Wc/0FhdMAfzrR/tqyMIS8xwf049NkOTkz5gzMvfc6JKX9w6LMdxAT3y9auoCxmM8EpxrCdnAGvjNvBqSF2F6dPS0vlzDezjRsmc7ZgXUY2y9EvPiQtLdWu7QOkX0zI/Dtj+NPJfrdwsXVFbFekNV7ZriCiErMurpVNUevkLTTb25RaJ29B2VSu7Qoi4zV00nY736ZsJA3jF6s0PPkuZQMnbbcX6jV0/exAzfbZr2Oz2jecN7/P297jA2QOeQaNFcV/7i35y68P/7m3JGOvndZMt3sW18goI9BV4bVWWH2z1/mzVgigwmutqNdhV6GCRbb9fxdZsM7HM437TmcEHDXxrseJ9txFvOtxMs77fSEX8PFMs/sxMjKJMx4ju8JnErtbk9g2tk3Wg+V8cGDba21wt9o3pNrs4Mhz9Z8xbuS++zxX/xm7itMDKBSVLvQ3Nqdy/DBx+TOu0oX+l3M17eCc1ccrDRXDoGaI8b/SubcrqJTkVIK+NV5HOfcz43bFby+Qkmx/f12UZBijEDdAWpoRNGjaBLp0NvHC84rBj4GXF/TtrfnxJ1j0V1b7fn3hfy8pLBYJdIni4eSksNk0ZjOYzcaQRoDvf4SoaM1rryIzgApR3tismNJSwRnjf5vV6AAKuc3/1oxhdnQ8XXYp3JKyglIJLprPmsaj14yhtb01tXzrwDXqBWdrZwfzue10ip2Fmp/Aor4vkBjokbnOLSyO/ks/omPSPJLOtbZrmCQU/fAhR29/YoL7cfqVL69al1YhiNOvfEn1GU/g6O1v1/4D3B/UHC5sZbNTdRxcsjKLrEmhBKeGGOvttGXDPFwSbcQE38H5J6eR5lc5c50l4hyVvhiL1+a/2bJhHu27DrXrMRxNIQCE9KzOtlyGP7WctolqK05fblfwwGkFVyP40ehAQ+5eOgCfWO/MddGel/itzyL21t+X2a6gMl5D3YJW8ErD6azcGkdCCng7xfF3hz7M2DeGVRd62v0aun7hbApVOLuCs98NbZcb87ntmOIvsqxCd5b2eJ1U36zX0Y+R5+izcjK9o/7BbOeQZ29vK/5PVzcCZzmD7yYT2Gz4D62Gd7gVuy6pbVasi42hnldPBKjRKJwKUZ/QfHEdPvEexHjs43zQn6RZYjLXWdK8qHShPz5xDUm/uA7oUfD9v6yhWdP8WDqbfRyw+GYtT4uE4Oh0Gjaye9M4dvbO9t69ikmRWMkdx87edj9G+7ZjmYQx62LYFR8+ATjwXP1naN92rN3bTtgShnvIbTgOeIvdr/QlzT+rBqUl/AJNZizBfZE22rWteI0t5a5Z3UC+Ow3Vz0LwLoVbUtYrKcFFs7mp5nQVo529Vs5blzl00WZShLUMzKybFrAtFJMNfOI8WDlvHf2G2f86KiqS2SXEDaA17NgJM96FtettPDlUExllZNDM/TJ7oOv552D0KxLoEsXvvbcVn81S/PCtonLWd0KWr4Bhz2mSk3MfsiKEKHtCNi7mj8GtSU41fnVPTrXyx+DWhRqaBMDZLXx//jxd/1O45vgx3TUJuv6n+P78eTi7xa7Ne5jy99U0v+1yUpeHP3ZMmsebv7TEKcp4Ek5RSUz/tRUdk+Zla2ePK4cPecW7Zsuo8Ip3LfTwoQv+Ns4+Ne3yE8rlIlzD2SencsG/cH36/UHNedPLG2uKsaPWlCje9PYpVKAL4FLY6cxgXZpvULZ1GcG6mOB+XAqzryg0gMetCZzvH8C6PIY/rfuoO+f7++Nxq32ZXY0C29D+eEce/3EQ3rHZh7x6x3rx+I+D6HCiI40C29i1/cgoI9D1TssXCciRlRHgHMY7LV+kW9AKu19DCdcJdBW0XU5NrQ4E2NQ1h28F2hRNrfbnXei4MJZV6M6i+z8ltUL211GqTxCL7v+UZRW6o+Psyx7T7oex+lXMO8vUZMLqH4R2P2zX9s3ntkPshTxzehQaU9xFo50dEi9EEeOxj9NVvyHNISbbujSHGE5X/YYYj30kXihEahrGkO2Pn7exdVAytkvG543tkpWtg5L5+HlboYZsp9ercEPb5aV927Es+L8TeGvjXHtrEwv+70ShAl0A6WFJRsD9rcdJ880ezErzrci2tx4npGd10sPsy0xrEtSGOud9rvl5XPdCBZoE2dcPAcSdiwCMHw5+X3U/Kxf0Y+N7XVm5oB+/r7qfkJ7Vs7UrbSTYJUQh7NuvSUrSODoqpk+DKpVhxtsQHgHxCZqXXtasWWt893RyhHdnKB64z4TKa3C1EEXIxUVRt47Cz1dRs0bWcmdnOHQY7rwHtu+QgJcQZV1R1uLZc24DdXcDqDyGoCnq7Dba2SOzBkxew6t14WrAaLesbCdFOqZ0I83VlJ6CuuJX/SvbFZSPZxr3h5wnxmMfh2vP4ETNOZyp+j0nas7hcO0ZxHjs4/6Q83YPHzppM2H1rXzti3C/Kpy0Ff5rvgkT+nLhbG1NxXQDLh28Ampw/slrB+vOPzEVr4Aadj9Gmrs/28ZdZ/jT2Dakudt3nk1aMXDpnUDeQ3vuXnonJm3f9z1fHyuvNDSG6F29+8Zr/+UGb+LrY98QvQsq8oa2y8khMYoXk1wBUNYcwzytxhMameSKQ6L9gZZD5yuwtMfrxo08XkdLu4/n0Hn7AiExqfkLQOS3XU75DajbG3h3rejN+aA/L28k50aN/85X/BPXit52bR+yhts2TQhh2qnfcE9OBsA9OZlpp36jaUJIoYbbeuaz8H9+212L2cERy+X+zYLJ7qGL2fg552sYJn7Odm1eaei439jnvPqhDvtV9iGNBeRfIYGQntWv+cNBSM/q+Few74eDoibDGIWwU0SEZsRITa9e8Or/IC5WcfacxtkJxo2BKVONFHSzGSoGwozpiurVJcglSocO7RXJyZqWLeDO/vDBR7BsBbzwEnTsYGPEc4qgIHm9ClFUEhLy/mJoNptxdnbOs62jo2PmMpPJhItL1qx4cbGx/DtzLClWI3CdlphImksCJCaSarPhaDJlztSXnJKSZ80+pRSurq6ZtxMTE9Fac/LoSRziIaJVby48NoE0v0oopXBwcc0cguby31+cPHqSWo1zf45ubllfmJOSkrDZsgfZ2++I5I/Lwy4s7llDWNITk9A2K+0PhZLU3JecrtxucnIy1tzqDXnXJd3Rn7CQc/x3JJn0BxKxpriQlBLBV2tiCb7Nheq1KpPoXRcuH+Mrj0NKSgrp6XmPs3RxccF8fjWKEI5X/garBq7YjRR1iaOVvqHa2QdxPfsPtDKKjKemppKWlnfwy9nZGXPGEFTlQ1riNV4/Ts6YzGYcnAJIS0sjNTXvWipOTk44OBiXAznbbtiomfWZptoHiWgSsKalc++DmpHPQ/t2VlIyxsPnwtHREYvFAkB6enq2tu5N7yfR5gJJRpDAbHHEdLmtzWrFmpJMmpsP7k3vv+q1b7FYcHQ0LkKtVivJly+uc1oRVZ/oW9wxX76g1DYb6cnZgxKRTm4sCq1PT7+EbNu12WwkJeUdwHBwcCBtRzSmcBtaQxJ5HIdQiNp4Ft9O1Yx90JrExLyL5l/5vm/uux1lvkhSGmgbJKWaSLGmY0o1E5+scXDQBLlexMN3OxB8zf4kZx+RkJDAJV93oh1tuCRlv0hWChxNxiC6BBeI8XPPc9t59REAZuVB6wQLEw80JXl9T5Jvq42tog8uZxJx+eMwpvZ/07r6KeKVB9Zctn+9PgJgQ4wDCS7eWK4IdKUnJ6OvqNGV5urDhhgHKl9+jHz1EZd5Wpwy/7ampGCz5v6+d7IatU8zfsjOTx9hMpnQbv6kWjVp1tzPsTKBiyUr8F6QPiI1NRUPX4g3XYJcfsO0mMCkFGmOMVSo6HDN18+1+ohduzWBJ84wKGwDCo3tiuftkR7HoIsr+MrWgU2bq9K0SfbvlNfqIzIEaDAnppPq5IHZ0TgfGX0EGDUEXWzJBLhaSLi8+ev1EVd+fl7ZNj0tDa+zNpxTNU6ONuJiY7PNdlrQPsLJyYlNPhVJqGghPSnv932cr4VNKRXpQ8H6CIDT29aSmJnemf2z3KTAYlJYo6MJ378Z91pN8txubn1EhpbtPHirTyPjM8ekUMqEQ0ZbkyI9IYGNoxryalzoVa+ja/UROeVsm5SUhI+PT577nF9K57MycXR0dKEfrKB8fHxK5HFFFjkH1/bb7zY+/gRu7wPLV4K3tzGl+KQpkHC5r2rRHKZMVHh62hc4kHNQ8srrOcj4cvbr7zY+nmX8EJqSYnzZdXCARx6C/xtUOobcltdzUJbIObi2gn4pu1aGb8+ePfnhhx8yb1epUiXPL8Dt27fnzz//zLxdq2YNomNic21bzU3xckPjgqHHWz/Ta9AznDlzJte2derU4b///su83bZtWw4fzn24jnuVajy0eT/YbKBgcfManAvL/bXi6+vL0aNHM2/379+fjRs35trWwdmFx49nDUFacf9dnNr4T65tAaKisrJEBg8ezKJFi/Js+05LJ5zMioNzdrNiyiSO/vRtnm2PHDnCbbfdRnR0NC+//DJffPFFnm137drFmZ9+49ySz/jpfAT/XMz7Ynrm0Gd4+E0jw+nNN99kxowZebZduXIlzZsbwwdfG/Mmn83Ou22/nxZTqV1HHj1ykc1bf+OVV17Js+33339Pr169APj2228ZPnx4nm27vT+T8C/vwaos3N57Ee+8/UTez23mTB5++GEAli9fzoMPPphn23bT3qXBYKM21/l/1/P3fbfn2XbixImMGDECgB07dtCjR941Ypq/NIYWo4xZHaMOH+SXbnnXbRo+fDiTJ08GICQkhKZNm+bZ9sknn2Rsh2c58/x6Lul47kwYl2fbe9rfwZw/5wPGBWTVqlXzbDtgwADmzZsHgMOhv/Fsl/cMcN2DfFjypCPJt79Det1+BeojbrvtNiIjc8/Yquam+F9D44J+dVvNvz96E3o+92GAdvURGDXTFvXoyMlLx3JtW6A+wsWVx49lDfNcOugezqzKu6h7QfqIRZu/Z7FLU6w+Qax56Znr9hF+fkb9sfz0EdWqVQOblakD6/Peurwzt3a8WIcaYzeAyVygPuKjjz5i4sSJebYdUc/CbZ5GIOds43t4a87CPNsWpI/o89ZnVH30EZxDY/Bt9xoTk+fn2bZAfcTUd6g/eAhKmW5oH/HKK68wevRoY9j/268yYd25PNsWtI94++23WbBbsdU3mm8a35Jn29vue5jhz85iUBNdoD4CoEKFvLMW63ubeKaO8V5u/+osOjz6/A3pI/yaNOfuxWszb38X3ID4syG5ts3oIzK+P16rj6hatSq7d+/OvN29e3d27NiR5/PLLxnGKEQBxMZq/veqjb37jBjxXXcqevWEvxcb2VuPPAhjxmUFugbcYQxdtDfQJURRyrjY3n/AuEYFI2DrcvlHo3nz4amnNYePyGyNQpQVOWfPy4u9M/Vd0+WhQ6lXFBwvDIdkK1V/+Qf/NZup+ss/BG62r37Qtfgt+hSXU/tu6DZNaSFGMejrfPSb0u17Pl7ReWdUAaA1rufjqXwq96CnvSqv2cOnYV8wyPFPFi+9uT8XHAKMzIaznatcs51ytm8QzfWG0SaEVSTyWO1CDbfNTbp3AAkuRqArsU4lHM1O179TASUGuhJXzeP6DUtYbEoU0etfM97HRfFyN5lJtgRfs0mk+TG7itMXhMX1xp0L952LCPhhBj6L3+Fc0B83bLsRxxeQlnjj+3/IGvafHG1/nca8+Dvn74WT33YFEd+oY+bMvC4V7C9QX9ZJZpe4JjkH2cXFaZ4fqWnRAu69W7F7L0x/U1O3LjRqBN9n/RDPSyNh4F2FjyfLOSh55f0cxMdrDhwEHx94ZbQmItK4ZrVawcMdEhNh0KMlm+VV3s9BWSDn4NoKmtl19uzZPNddbxjjleci5/CDY/+tZN2E3DNCMoYoAXSd/iPetZsXeBjj7nXn+bl19avaOrhktU1PSuKezSdp0qlSrtu+1hClyD9OcPHVTZm3T9V5lzRLLJY0T245/DK2y2NyKr7VBt87s/9anp8hSmH7NrN6/CM4mrIC/mk2jS3HYeg6ZSEBDY0LUVdXVypUqEB0dHS+hiid/vkd/v3qA9JtmnRl4tAn27B6+WKOiaTusy1Rl59v5ydGUuvBV4GCDVGKWnOa1V8dYuM7XYyVV9aCsWnMTs50eXENnZ+4DafW/gUexrhrt2bH+MUEH7kEwOFbjXPgYvWk4VEjU2p9HQ+aTOp11dCkDNcaorRjt2aRbzrWCi5gUlcPY0xKwhyVxIBIB5rn2H5+hzGeWPsX39Ztjy2wOphMVw9jtNmwRF3g0eNbuKXzHQUeouRoMrH8xdX882ZfY4hSjnMA0Pn1pfR+uzvOl4fiFmSIkk5LY3fjT0iNdwEUi5bdS2KgG66hCQzo/TMmFB5eqdTeOQRlsRR4GCPApi1vM/XQpygNjW7fgtkjCFtCKPuXt0IrmFT/eZo1ebHAfQTA+jkXWdfbg2R/T1Cmq/uIhAScwi7RaXkcHYdcPQtdfoYx7jy/kT90bUyVaxlfWsgxjNFmwxx1gTtNR2lWqf1V273eMMYjMTuZ/95E2ib/HztHdifFJ2vmSEvEBRq+v4LNTgt5ZMQ42tzSreDDGK02drT4ifTIWBRcdY41YKngRbMd96LMpgIPY0xJTubvpzuTGBkKaA7P3ESabxCWyAs0HNEGkzLh6h/E7Z9vIP0ax+Fawxhj5q/iwEerCKnyPQAOZjBfPg5WmybdBtXOPkj9Ed3weqxbtu3mZxjj2pN/8vb6FzA5gMlsZsDRdmhXf9JiLvJ3rU3oy58HL3f8kM41+wPX7yOu/Pw0m0z8/n8dSI+9gM2k2Dsze1+N1YaDZxADv1qDk7NzgYcxpqVrXrngAM6JqJw1uwBt09jiHHinmgmLgyrwMMa4S9F888HLHB0+01hwxZBehcLBxZnaHwzh8Zc/Iik179fOtYYxnrQqvkzLCtpnG8YIpCcZ7/snLOnUNGfvKzL6iIxjXtBhjJUq5f4doiCkZpcQ+bBnr6Z+PfDwUHz0vubhxyA0VLN+PTRrZmR1ff+DcSHh7AxvTlO0aC7ZXKJscHdXtG5l/N26tebvxUagCyAuHm6paWR5bdmqmTwRKgbKa1uIwrryoqugbd3c3PIMYMRVcyTd3ZiJKWfBWiCzFk+ov41KV3yxvJ6ML6FhzgFYXK+97w4uLoQ5B+TrOV75BRtgTWwo1ZTT5X21YVOXZ/dSVhyVGYVxcbQ3NpR+bnnPaX/lBcGVVFIMTjmKGVtyuQhRSTG57r+TkxNOTtfOdnGt3Q74gIS2d3D+yWmY/CobQylc3Tg5ZyeVvhiL1+a/ca/bPvM+jo6OmRdS1+NX4yINtx7FebRR/DgxKGs/Xc/H0/KNNdz63x48xztjs1TKvKC8HovFgsViITE+le7nI7AqNzQai4MNk1mhtA2NRqHocvYi5+IdcXO7/j47ODhkXiwDJMen0m3hRtbMMLIOrgwUmZQJk6sbXSauIfnOrtfcvtlszvM1FlClKlXnT+L0K1+CzYYymbJet5eH21af9QYBAx+/ahsmk+m6r111ZgvbxrZGKZWtrlwmm2bf+E7cFX0A7W4Mn1RK5ft9n7AtEnOCDy4KbCaFycsDi6sLJi8TTmZnTDZNaqwjCdsicW9bseD9ic1K/6Nr8Ux3532XREwerlhc3UjFmQAUIxPd6LxvJYnBo/OdWXTlhSpBzlhrVCavV56DmxvWmm4QdOq6+56zj8iQakogfstUPKt8ZZxTkwmHjPf95XMcu3Iaqa375foYefURGRo5BnPvsrvxiLFR+68VhLTXJARacAtNo9pGhclmoab3vbR6p1O2Yen56SMA4jaF4hiVgqNyyvMcE51M3KZQPNsHFaiPyGjbbvg01k8dAigsrq7g6oYlyRXT5aBIi6cn4+TsTH7z9zL6iAzaK4WoykuNPjVHN2o2KcwKoiotxdOr/TXPc84+IkMl36qYnRTVz0LwLo1b0r+Z6x48AZubKk5XMdrltv3c+ogrPz/P79yINe4CsW365dlXO2/+m7jje/FoltVf56ePALA4KNpcsrK9lhtosgW8tE2DghYX07FcfuoF6SMAPOOOEjFsutG35TZhic3GhSemYL64C7eqeQ/jzunKfaivwS/ZgRiNcaGbg4OzC14K6junX1WDPyfXAnznyOt9X1AyjFGI6zhxQvPcCM3Pvxq3PT1NzPxQMf41xZCn4PAR+Gux8f6vVhW+miOBLlF2demsaFAfBt4FUyeDxQInTkL9enA6BJ4Yovn3v5t7+IoQpVl0ciSbm2pAXT30RgMotjTVRCfbN8taipvnDW2X07GKMUR7XuKSx14O1X4Lq4PxC7PVIYFDtd/iksdeoj2jOVYxxq7t53c4R2GGffg3aktytwc4/cqXpPkGZVuXViGI0698SXK3B/Bv1Nau7ZuSI6jRZQXVVpzirm4/0GPQ37R/aTU9Bv3NXd1/oNqKU9ToshJTsn1TwVc/uhFrgjsxHvtzPQcxHvuxJrhT/WjudZTys/0qf4bSacQ/uIZmz0hyvZhApxH/UOXPULu3D+DfIJig4zuoPuNJLFHZhz9ZIs9TfcaTBJ3YiX+Daw8jy8vJdE2st//VM6xlMClifQI4mW7f52V6mJE1EtKzOr+vup+UCsaFX0oFF35fdT8hPatna1dQ5nPbMcVfpGuaI7/E+eBxOcDsoZz4Oc6HrmkWTHEXMZ/bbtf2TRVzr/Nlb7vcVHAN4GjSXzh++TKWHMOyLZEXcfzyZY4m/UUF1wC7tp+8LRLPGA8UCrNNUXO9iYY/W6m53oTZplAovC55kLzNvr70+Lb8neOMdvao1v52Oj/5HG7O2QOWbi5mOj/5HNXa5137Kj/2Ou669pBtBWmOMex13GXX9hsFtqFhuA9d/1O45jgMrknQ9T9Fo4gKNApsY9f2D++8SExwv2v21THB/Ti886Jd2wd4oBF0370Dr4Tsr3WvhDC6797BA3n/ZnNdJ9M18V6Vrjkzb5xXJbv7ITC6uAGO1svnOJcvFZfXXy/QVVIks0uI67jlFsXrYzVHjmp+/Elz4iS0awu//0FmAAwguDVMHK9wdy+l73Yh8qFtsKJNa+PXpdVrbFgsxg+kBw4awVyLBV4Zo3nkIc2QJxUODvJ6F6I0qeAagGdsQ6qHNONC0F/GhchlljQvgi7egWeDnXZfANaywLawNEx+Drlf6Ns0tvB0auUvmegqlSpUZHW7t7g15OphnmkOMYRUXcixalWoX+F9u7bv3yAYV78gEiMuknshHoWrf5DdQRAATGbODX378uZyXISYTGCzcX7oDLtr8Wg3f3xvPULtO37l1JqeVNyStc7RPYYaXVbie+sRkuys5xRIFHs99nG66jdXrUtziOF01W+ofuZRGpH/DISc2w8Bqq04TZV/QghrGUiSvysu4YkEbAs1Mlout7OXyWymxbAprJ86BM+tS0ioF0yaTyCW6FDcDm5G2Wy0GDcn22xrBRHrmr9jm992OTkEuBDSszrrPup+1brEQDfWfdSdTiP+oWaAfdkPKsGoT7SrZi9+6jCeFBdjdtMUF18mPrqO+zZMoenJ5ZntCsrVLf6GtstNo8A2tD/ekXsW1MP6zl+caU9m5lXVjWC21cP8WEe7AyH5DSTaG3CMdXAhPh/n2N3B/gwX89Hl1An5hts6uLLPokgDnC2Kh9q7YQr5huSjLbHe1svu7Uel5z380Z52OSkNbXaZSOfqTGWFMWto8C6FsjOWk3LWkfNPTru8wTz66iemcsu8LVffOZ/MR5cz8L+R9N8E99eqT4pbAE4JYbx//CAWrUn2+8Duc1DU/VCGhmbNIEcri1LNXPkzkxdGoKuhufT+CC7BLiFykZiomfGu5v8GKWrWUHTrqli7XpOUBIePwoZ/4dKlzH6QB+6HZ59WmM1y4S/Kvox0/BMnjXpdDg5gNkPIGaOGV5dOsPA7OHZcM+l1JMArRCnS0K+1MfQmzh2vuAYkuJ4kzSEOS7oHbok1AcU9y2vQcHr+hzRcqVlj+PAdCHoelE1fVatIK7j4AzT7n337P6B1S6LfP4++elRMZrJaxfDzDGjd0q7tXxkE0ZcvlzLoy5dTLZ6ebHcQBOCkTZHgeI0LVJOJeEdXTtrSqWXHRYK1cguSLIH41DpKhVuOEnuuKmkJ7ljc4vGsfAatIMlSEWvlFnbtv0Mlb84HXZ6ZK+dJuFys+3zFP2lWqbdd27dUqQAYGV0mm6biltyzJox29qvW/nY6jpvDts/Go/ZnDX9y9atEi2GTC5XV4uZbE/IugZO9nR0cW/iyJehywDVnUNmkwKbZMi6YnpXtD5juqtmLOb1nXrXuklsgc3rPZMiy4dSxM2Bay9GMJeIcaRWCMutpZWOzYYk8Ty1H+99nJq0YuPROwIqDzUTN9QBWMgYuaTR3L70T0yT7vqM45DOQmN92ObkFB7Dq9suv8bzO8dg29I+y83LdZsVp9XRAo0xmtOXy8HCLE8pkAq1xWjOdxFrd7Q68ewfW5FI+29kjfP9mrJeicx2SD0bAyxodTfj+zQQ2blfwB6jTnLRrTahiMpHmXwXq5F2D7Zoun4M1lhTed0kkLGIDXE64vddD8WKSG50LcQ6Kuh+6UkOzpr5zOvOnPE282QF3azqPjZ9dajO6MsgwRiFyER8Pe/fBwUOa2FhNdDSMGgkjhkNykhHocnAwhi6OfkXx/LMmCXSJcueJwYrPZik+nanw9jKWxcXDug3Qtzds3wFPP6s5c7b0/qIjxM3myqE3ChPuibXwiW2Ke2ItFKZCD70xmxVPtdUcmppOSmT2935KhLH8qbba7s/ES0e245Zsu9aoGNyTbVw6Yt/wKoCT1r4sTZlNgs5eGDteV2RpymxOWvvavW2AuHx2ifltl5NVm5ixbwwAWoFX1RD86h7Aq2oI+vKBm7FvNFZt39f8uOqWfA1NiqtuX/qey+0dcPRIIO8p7jSOngm43N7Bru1f6XRlzY99rSzpbGNNsI0lnW380Ded05UL97lV06zwSk+CvGY/1Ta805Ooaef7YHXMEZIDPa45TDK5ogerY47Ytf3kwOb80H6CcSNnRsvl2z+0n0ByYHO7th/YIJiaP71jvIZyFpe/XE+r5i/vEViIDMqELWGYwm3XDISYwmwkbLFvqKRb6wAs/iau9Tq1+Jtwa21flqxHI0VyRfdrn+Mgdzwa2fcayhiqurtmL8Y/upZ4FyOwFu9SgfGPrmV3zZ6FGqoK0LrDYJJcTeg8jpFGk+RqonWHwXZtP7+zBts7u7BXo1zq7RWiXU7mc9tZmxLCGNcEwnKkn4UpzRjXeNYmh9h9DmqgcQ1L4KoZVjLYNG6h8dS4QdOJmhR4HtmGz4bf8DyyrdQHukCCXUJkczFUo7UmIECx8GtYvgJeeEnz1DDNa6/D8BfgzFkj0OXmCh+9r7jj9jLwThfCDkopGjZQ1KuraHdFaRlXV1iyDNq0hpgYGPqMZtt2CXgJURoU9dAbgM6dFKP6aE7/L429r6Ry+E3j/5BX0hjVR9O5k/2fi0V9cWO1aj74WHO6Cvx0e/YgyM+3WzldBT6cqbFa7e/TPPL59PPbLqfde+C3wz3537b3CUvOfqEdmhTI/7a9z2+He7J7j33bT47NXyA0v+1yUhYLlUZlZFPkWliOW8bUQuWzsH5e1p/6m0mrniIi+SIXA+BkNbgYABHJoUxa9RTrT/1t97ZNCga4WjDSDXMEc7QNUPR3tdh9MRiRlr/3Z37b5fTPSQdiPQLzrvWjTMR6BPLPSfuyikxmMz2Du1yzZlrP1p0LlUFZ1H2dUpoanVdevpX767RG55UoO8fQHYw7fkPb5aQSwjOz9y65Za9BmJG9t6tmL7uHqgJYLI5UffRpgKsCXhm3qz76NBZL/grr51TUNRb9b8tfbcn8tsvJFh/K+y6XZ1fMLUsW+MAlEVu8fZ9nSVvDaDn5v8sPluN1ePl2iymbSNpqf228sk6GMQpx2ZmzmieGaIY+pbjvHnB2NtG8mY158yE1FaKijHpFJpNRu+itNxRBQRLoEjeHJx+HsHCodYuR1bV8JSxYaNxOT4dRr2jGjoZePeU9IURJKuqhNxk6d1J0aG8EXiKjNL4VoEnjwg/nL+qLm917INJlMZbOQ9BoLl7xg73WoVg6DyFi7Rx27+lH82Z2PQQ1TRov9OXaJrkdD43X5Xb2iLxcymrVhZ6sudCN5r7b8XMOJyLZnx2RLbBhztauoIqjiL/HEwOowSLOv3uO1Lis2l+OnglUeqkKAcMfIDo62u7tW21WZm0aR+5ZOcYEDp9sHk+7an0w2zmEq6FZ0+fkVlZ5VyO1QlaWoGN0KN0unaFhAztfQICfJX/vz/y2yyk8OX/vU6Odfa/Tau1v5w5g29h+hAdUz6yZ5h8eQsuhEwtdHL2o+zrzue34VdmMuiOaU2t6khqfFfBwdI81auNVOULSue1YCzDTXYb0pFBwq5+/dtxW4O1b3fz5qcN440Zu2Xvaxs/txzEm5WSBt32l3nePZxlw5pvZuCRmBX6TXc1UffRpet893u5t+zcIxtXbh8RLefcFrt4V7K6xeIuDwiM+jTjHvGtQeqamc4u3fZ9re1LDCLtWP68gVGn2pIZhT5369LAkqq04TacR/1yemTfrA831YgIt39hEtRWnSR9QzY6tX81mtWJLSzH+TkvBZrUWKmBdHCTYJcRlVSrDIw8pvL00q9ZAVKTm87lZ693dIDbOKE4/cbzC1VUu6sXNw8/PxLszjL937baxZKlRx+vkKXBxgZo1YPI0TWQUPPSAvDeEKClurQOwBLmSdjExr/rrWCq62j305kpms7I7IJSXoi4gHx5pxdJqPKCvmkVdKY3WCkur1wmP7IO9X5MzZq9akGomI7CSxXhOhZm9yveKUlY2zGyLzP1C29fOklfFUsQfI+BVe1AaSYs3kH4+GodKPrjc3qHQGV0Ae0M3EZF44RotNOEJ59kbuommQe3teoyQjYs5P3UIdUyKhHptshXAP2+zETJujt0BnW4V6rI85iJm5wBULtlXWtuwJoXSrUJdu7bv75y/AFZ+2+WlWvvbqdKmN+H7N5MUFYpLhUD8GwTfkAvkou7rMjKefG89kmttPHU5iGFvZtQtDoqNCeewuAbleY7TEs9zi50TAR0LasWltGtkVCkT0R6VOFbBj1p2PUKW3nePJ+2OV9myYR6Xwk7jHVCd1h0G253RlcGkoF1tF1ZuyTvY1a6Os919qUnBXZ6KBSkYmVA5alCi4E5PhcnO7L1wN+8b2i6njEDu9Sb7KOyPW2D0d9s/G09KrPErSkpsFH8Mbk2LYVMKHbguSjKMUdzUbDbN/G804eEapRT/Nwj+/Bve/0DzwcdZ7fz9jUDXww/C9KkS6BI3t5OnIPqSMZzRZgMnJzh2HKpWhVmfaj6eZcOWV/0AIUSRUmYTQRNbXb6Rc6XxX9DEVihz6fwKmFFA3pD7EyhMAflYx80otwtXBboyH0FplNt5Yh0327X9DBmzV3nlWO4FDCrk7FVNGhvfS64lIMBoZ4+iPgfZtmax4HpnVzyfGYjrnV1vSKALICoxf8N28tsuJ5vVyvbPLgdNbTbc9/+Lz4bfcN//L8pmzDy3ffbr2Kz2zUJnMZsJTjkNGEGPK2XcDk4NwWLnOeheS5MWqdF5fFZrm7G+e63Cf5abzGYCG7ejRpe7CWzc7oZlghR1X6evKM6vTDpbbTx1RbaOtrOIf5PANsQeeMfYRh7nOObAOzSxczbJuHxe5ue33fVYLI607zqUfg9Mo33XoYUOdIGRXVfLK4GejV1xc8p+kt2cFD0bu1LLM6FQdccamjWDnKx45TgMXiYY5FS4vrqCW8XrNypAu5wyAr6orMk+av59gopbLhqBLgWWoML/uBWycTHrpw4hMSL7DwiJERdZP3UIIRsXF2r7Ral0ftMRopiEhsLC7zSLl2ri4jTxl2dAjr5kFJ93dAR/P4iOhjGvKp4dJoXohbj7ThN//Aq//6wYeFfWEN8zZ8DHB374ycjySk2VgJcQJcGrb3WqfdYZS0XXbMstFV2p9llnvPpWL6E9y5+MWfRc/bJfALj6B9GxENkyAD5B+auNkt9219LQrBntnM5Qx3Qeshj/j3ZOL/Q07WazYuTz1/4u8sLwwg0pLcpzUBwquObv4i6/7XIK37/5qgu/7DSJ4ecJ329/0PT+oOa0jNmKNTl7QM6aFErLmK3cH2Rf8XgAi4MiODr9csmxHLWWLl8kB0enY7Ezq6i4FGVfZ63cApt7RXQeBfA1CpuH/bOemk1mhtfvx4kNj5OWIwsxLfE8JzY8zuPVutg9zLaoawcWh4ysuVsCLTzc0YP+Ldzo3tCF/i3ceLijB7cEWrK1s1dR9dWNAtvg5xp0zTb+bpVoZGdAszh+3LoysH81Y1lhAvtFTYYxiptScrLG2dmoufXlHM1r42DHTs3+A5BiDEWmRnUIjzDqdX34nqJJ41L8aSBEMfO+/BOYm5vxQZeWZgSIU5KNCRxW/gMxMZppk5FMSCFKgFff6rh1r8KLfUIxxyZh9XTh/aWBODiW7voaGYpq+JOfe/7qTOW33fWYFNQq5AVTbjp3UkybDB98rAm/4jovIMAIdBVmkoAMRTkErahlXGRGJOY9FNPfLcjui8yinkghw/1BzbnbamVV1C4i0pLws7jQrUJdLGa/Qm0X4IFGwN50Nvs4YPHNWp4ebQS6HrCniFAJ8OpbHc9eVUnYEkZ6WBIOAS64tQ4ofPaqyUxK1zE4/zkSjUJd8TrKCICldBkDdgajALrddhfx8fHMWtmXZPcaWFwCSUsKxSXhNC8ET6JjjX52b7uoawcWhyuz5kxKUalC7qELe7PrrlQUfbXZZOa5NlOZtOqpy0uu3L5xTp4NnmJ3QBOyAr4XJm4l7UJi5nJLRVeCJrYq9I9bBQnsBzZuV6jHKgoS7BI3nYuhmuEjNE8+AX17KyoFKerV1SxbkXXB3qEd/LsJqlUzCtFXriQX60Lk5oH7FElJmuDW8P5HEBZm1L87dRq2bYfhIzXvvw1eXvIeEqI4rV2n+eBjRbitIrgDNrjvERj5fOFmSyxOGcOfbqSiDoIUp+yTBHB5kgBuaAZ6UZyD4pD9IjNnkfXCX2QWRxH/DBazmd7+DQq9ndw80AgGpqfxz3FFrHbGUyXTvZbGUqVs9BEZlNmEe1v7hoJdi/W2XiT3/wCn1dNR8Rczl2uPQFK6jMF6W69CP0bHGv1oV60Pe0M3EZUYRgXXABoFtilUAASKvnZgccjIrlPxodmCjRk0Cu0RaHd2XXHoWKMfE7rNZdamcdnqCPq7BfFs8JRCBTQzFFnAl+IL7BcVCXaJm46fLzRsAH/9rXF01Mz9As6cNdYFBECjhvDPKmgTDJNeV7i5leJPASFKmLe3YuQI4z3i5mZj5Cgj0JVRD+fIEXhyqObTmeDvL+8lIYrD2nWasa9ffWEQHg5jXzcyLstKwOtGK+ogSHErikkCyouivMgsriL+xcHioOhTB3x8XIiOTib3LKCbl/W2XiTW6o753HZUQjjazd8IrtzAPsJsMts9UcK1ZNQOXJRqvpzhZfDCCHQVdphekSuG7LriUFQBzSsVVcC3OAP7RUGCXeKmseIfTZvW4OGheG00DH9B8/0PWYGu7t0gNtYIdD1wHzw7rPBTqAtxMzl6zJihMSgILly+rnBwgIuh8OhgzaczNbfUlFKRQhQlq1XzwcfXvoD5cKamQ/sbmwFUlhTHL+2idCiyrJnLRfzXTx1CXkHTG1XEX5QCJjPWqrnPelraNTRr6junc9KmiNNGja6aJl2qM7quVBzZdcWhqAKaRa2sB/Yl2CVuCucvaKZN19SoDrM+0uzaDXf2hw9ngoszPD0U/lgEIWfglf8pBtxRRj4BhChF7rnbRJ9eGmdneP9Dze+LjNkaARIS4PGnYMoEG506ScBLiKKyew/ZajjlJizMaHczZwQVxy/tonQoqovMjCL+2z8bn62mjat/EC2enlzqi/iLm0dR1Q4sLsWRXSdyV9YD+xLsEuVaerrGwcGoyzXiOc2cL+C+h4wMLoCmTeCeu+Hd98Gm4f13FM2bSaBLCHtlDPutUUOjlBHsql4N+vSCOV/Aa6/DQw/YeHaYQil5rwlxo0VG3dh25VlZ/aVdlB5luYi/EGVKGc6uK+vKcmBfgl2i3LpwQfP0c5pOHTSjXlQkJUFcvLFOKRj6lFHMddJUqFzJKERfpYwV5BSitOrRTZGYqPH0hO5dFS4uULmyZuIU+O4H2LlL885bRs0vIcSN41vhxrYTQlxbWS3iL4QQ+VVWA/sS7BLllo+PkbZ78JBRIPvIUWN5YADMeBOWLYfZc6B1K6MQvYeHXHQLcaN4eysee9R4T4WHa556WnP+AjSsD3v3w6HDcO+DRqHs4Nby3hPiRmnSGPz9rz2UMSDAaCeEEEIIkR9lMbAvhVNEuXLsuI0HHrZx6rQNZ2fFV3ONX68zAl333QPzvjCCXN9+D/feAzOmS6BLiKJ04SIkJ4O7Ozw2SPHmNLBYjGWjXtG8/Z6NlJSyW0tCiNLEbFaMfP7an2kvDJcJWIQQQghRvklmlygXUlM1jo6K0FA4dx4WL4WwMBv//geJieDlBW+/aWSbPDdCczoEXh6luLO/fNkXoqg1bqT45UfQGiwWxbz5Gm8vY+bGi6HG5BC7d2smvg631pL3pBCF1bmTYtpk+OBjnS3DKyDACHR17iTvMyGEEEKUbxLsEmXeG2/aCAuHD95VtG9nYtLrNj773MgmAejVE8a8ojhwEIYO01KIXogS4OBgvN/OndN8Oc8oXF+nNjRuBMtXGu/XwU9qBj2iGfKkwlRW5sQWopTq3EnRob0x62JklJHl3KQxktElhBBCiJuCBLtEmXThgqZiRYzZ3BTs3AVHj9pYthJ+uJxBEuAPr42Gli1M/L1E8/a7miqV4c1pUoheiJJSubJi3lw4dlzzzvtw5izcUhNOnDTWL1gIq9ZoPnhHExQkI+2FKAyzWdG8WUnvhRBCCCFE8ZMrCVHm7N6jefARzYaNRo2f54YpHn4Qfv8Tvv/BCHQNvAu++0bRrKni409sTH9L07IFfDZLAl1ClLRbblH06mlizmeQmmoEuqpVNYY1OjrCuXPwwCMw/xtbSe+qEEIIIYQQogySYJcoExISNEePGsGtBvWhaVP48WfQWnPhgiY5GRb9CZ4e8MZUeGmkifR0GD1W88OP8MB98NYbCnd3CXQJUVpUr2bi3RnQri2EnAFvb2O5qysoBZ/PhTfespGYKMXrhRBCCCGEEPknwxhFmTB+oubsOfhugVH7p2cP2LtX89jjmpOnjDYD74Jnnla4uCjOntWMHqc5cwZe/Z+i/x0S5BKiNGrR3ESL5kbG5uixmtRUsFqNYFfrVrB0GWzbprnrzgQefVhLLS8hhBBCCCHEdUlmlyi19u3XJCcbGR2PPQJBFWH1GmOds6NmyTI4ecoY+jRhnJHN5eKi2PCv5qmnNZeijaL1EugSovRr0ljxwbtQvRr4+UHzprBlK7RrA/EJ8PncZO59UHPkiAxtFEIIIYQQQlybZHaJUuncOc0zwzVDnoTHHlU0bqzQWhMTqxkyTHPwkNGufj346ANwdjJhtWq+nKf5egHUqwtTJikqBkqgS4iyok5tEwvnQ3q6JixC88BDsOFfqFIZat1iZu8+K08MhX6323hhuMLVVd7fQgghhBBCiKtJZpcoNWw2zaHDRiZX5cpG0fnlKyAx0Ri69PRQ+OprOHjIyOaaPAE+/9SEs5OJmBjNy6ONQNed/WHWRxLoEqKscnBQ+Poo2gSDmxtERMKZMzb69gYHB/h7Mbz1jkZrqeUlhBBCCCGEuJpkdolSY/43MG++Zs5nmttuNdG1s+LIUU3UJc3wFzRHjhrtOnWASRPAYjFitXv3aSZO0URHwZhXFf36SpBLiLLOyUnx9ptGRueZM/DUMGPososL+PrCP6uMDLBePTQ1qiuqV5f3vRBCCCGEEMIgmV2iRCUkaMLDjeyMvr01Tk6wbLmxrm5dxcC74Ykn4chRcHKCmR/CG1NNWCzGsMX532iGj9BYHODTWRLoEqK8UUpRrZpi0utuuLhAUhKEhhrZnevWw7gJMOhxzXsf2Ii+JJleQgghhBBCCMnsEiXIZtM8/pTG4ggLv1YEBpoY+pSmXl2Iirbx9DNw4aIxK9udA+ClF8BsNuKzERGaKW9otu+AXj3gfy9J/R4hyrPb+zrTtk0SW7baGD8REhKy1mkNv/4OS5Zp/m8Q3HePkRkmhBBCCCGEuDlJZpcodhcu2LDZbJhMitq1ITzcyPACuGsAHD8ODz5iBLrcXOGbefDyS6bMQNeGfzWDn9IcOABjRyvGj5VAlxA3i9atTHwzDwIDjduenmC6/EmWnAyffa45dLjEdk8IIYQQQghRCkhmlyhW/6yyMWEyPPk4PP5/MPplhckErq6Kf1bZeOd9iIuDxo2geTN48nGFUkYgKzZO8+HHmmXLofZtMHG8MbxJCHFz8fc38csPsHmL5u13NbGxxnKzGdLTYfFSTXy8Zv0GaNhA0ae3UfReCCGEEEIIcXOQYJcocuHhmlOnNK1amWjbBqpWMYJVAO7uihMnbYwZpzl3zlj20APw7LCsIBfAxn81M97VXLpkBMAGPSIXr0Lc7IJbK+Z/Be++r1m+EpydoHYjY7bGxUvAYoG/FhuztD76sOb2vgqLRfoNIYQQQgghyjsJdoki99TTmphYWLxI4+pq4rtvjOVRUZo339b8+59x22SCF56He+7OGl0bGqb5eJZmzVq47VZ45y3FbbfKxaoQwuDqagxlHvSo5qOZmi1bjTp/Dg6Qmgr16kJkFLz9Hnz8iWb0K5oe3WQEvxBCCCGEEOWZBLvEDbf/gGb+As1ro8HLy8TTQ+DMWXB0NNZHR2vmzdf89gfYbMayVi3hjSng4mJchKalaX74CebNN2p5PT1E8dADks0lhMhdjeqKd2fAf5vgw5lGpmiAPxw6bBSw9/Q0hkhPmgIr/7HRuqUxVLpGDQl8CSGEEEIIUd5IsEvcEElJmvR08PBQJCRoNm2Bzz6HV1+G2/saF5OXLmm++dbGz78adXUAbr0Vxo+BWrWMNlpr1q6D2XM1Z85Al04w/DlFxUAJcgkhrk0pRbu20LoVrFgJX87TaG3U8oqNBS8vMJtg02bYsNG4T7VqNgY9At27KhwdpZ8RQgghhBCiPJBglyi0xETN/Q9pevWEEcMVrVoq/m+Qpklj48LxYqjmhx81vy+CtDTjPjWqw7jXFHXrZF1cbt+h+exzzcFDcEtNY8him2C5+BRCFIyDg6JvH+jR3ajfNW+BJiLC6H9iEo02PXvArl0QEgLTpsM772mGPwt33yl9jhBCCCGEEGWdBLuEXY4c1ezdB/fcrXB1VbRrZwSz7rpTU62q4onBiuMnNJOn2Vix0hhGBEaQq38/uPceMJsVWhtZYN9+p9m5CyoGwtgxil49jPVCCGEvi0Vx153Qtw8sXgrf/6BJTDTqea1YCf5+Ge3AzxfcXDUXLmhOnYKQM9C9m8LPT/ohIYQQQgghyhoJdol8S0/XmM3GUKGVqzR//QWtW2qqVjXxzNMKV1eNm5tm47/wy29GoWgXF+O+JhOMeRX69DJmWUxJ0Sxfqfn+B83xExAYCCNHKAbcgQwlEkLcUE5OirvvhAF3wPoN8O33mgMHISraWO/oaGR6xcTCA49k1RKc+ammSWNNr56KLp3A01P6JiGEEEIIIcoCCXaJfDl6VPPyGM2UiYpGDeGRh2DLFnj/I3jvbTApCPBXDBmmCQvTKAWdOsCYVxXnLmiqVAJ3dxPHjmv+Wmxj+Qqjhk6tWvD6WEW3rlJ8XghRtMxmRZfO0LkT7NlrBL02/guJiTBvvtHGzRXaBMOjD8OcL+Hf/2DXbs1HM2HxIiMYn5amsVikvxJCCCGEEKK0kmCXyJXWRuaDi0sat9SEqlWhQX3YsVPTsAF4eZp4bJCNsDCYNNXG6jVZRefBKAjdvLlRsN4vBZatgCVLbRw6DI4W6NwZ7rhd0byZkSkmhBDFRSlFk8bQpLHi9GnNb4s0i5cYQa+kZPhnNezaA6mp4OQEKSlGva+RozQxMRqLI7g4azp1VHTqAJUrSx8mhBBCCCFEaSLBLpHNlRkLM97V+Pkm8u4McHZWdOsCEyZrKgZqTodoli6HsDCj3k1GoMvVFR56ADq0hy1bFUOfsXHgoLHutlvhxRcUPXuAp4dcHAohSl716oqRzyuefkqz8h/49XfN0WNw6ZIxnFFrqFABPD2MbDCAoIqQlAizPtXM+hRuqakZ/H+Kbl2kXxNCCCGEEKI0kGCXyPTjz5rvvtf8+J1R2Hnsq5plK838tdhKcCuIiNRUrQpT3jDau7oahZ7T0qBGDejY3vh71Wr44isATb168PQQReeOUK2aXAgKIUonFxdF/zvgjn5w4CD88adm1WpIToakJIiJMdo5Ohq1vlJSjNteXuDpaQTF5s3XODlpQsOgfVtF0ybIcEchhBBCCCFKgAS7bmIXL2oWfq955EFFxYqK226FLl3g8GFNw4YKb2/Fpk1prF6jeXNG9vsGBUFEBNSra9w+fAQWLDSGKDZuDHfdqejYHgIC5EJPCFF2KKVoUB8a1FeMfF6zZi0sXqrZtduYaMPbywh0ZQS7YmLA3R22bdesXmP0iXv2ws+/aCwWaNLIKHDfvZtRKF8IIYQQQghR9CTYdRNJT9ds3gJ+flCntnHRtXQpBLeCihWhcSP47Q94/kUICLBx7hyA5rZbjYu5EyeM+wYGwLHjRhbX3n1Q6xYYeBe0amnUwXF2lgs6IUTZ5+qquL0v3N5XcfasZvFSzdJlxqyNTk5wS01It8KePRAbZ9xn924Ibg1nz8HJU8YPAfsOaFq3ghX/gKeHJihIcWstqVcohBBCCCFEUZFgVzl36rQmLg4aNVQoBdPe1HTpDK+MUgQGwv9GwTvva376RXPwICQmGfczAl3GzGSOjnDwkHE7MhJ8K8BdA6BxY0XjRuDjLRdsQojyrUoVxdCnFE89odmzF1au0qxZA5cuZ3Z1aG/8nZIMJ0/D2bPG/eLioUZ1eGIIREVr/P0gPEJToQLcdpvmrv7QupWSrC8hhBBCCCFuIAl2lTNnzmpOnoROHY0Lp/c+0CQmwtzZivR0GP4crFwBQ5+xcToEEhKM+8XEGJlaOSWnGHW5Hn0YmjZRNGxgZDsIIcTNyGQyanE1bWIMc9yxE/5ZrVm7FuITjFqGrVtBzx7w8y8QFwchIWDTxv3DI0ApiIqCzZuNfy2aa9q20VStArfUVAQFSR8rhBBCCCFEYUiwq4w7elSzdr3micEKk0nx+x+aP/6EX3/UnD9vDCvcth3ufcBGWLgxu1huMgJdTo5Qqxa0awvNmynatvEhIeFSsT0fIYQoKxwcFK1bGZlZo0Zqtm2Hf//T/PsfrFlrBLWqVwNnZwgLh+hoY5m3t1H4Hozi99t3GP8MRpF7i4MxTPKuO6FGDYW/n1EI32yWQJgQQgghhBDXI8GuMiA+3ih07OSkOHhIM3uOZvQrisAA2LVHs2AhuLtroqM1Bw6C2QS3DwAwUgmUAouDMVvYlcxm46Krfj1o384IbgVVzF5HxtFRZWZ/CSGEyJ2jo6JdW2jXVqG15thx2PivUbh+/wHjBwWTCfx8QZkgLtao9/XdAggNh2+/hYRESE2FkDNGltiefca/jL4cwMdb4+kFXp5G/UQfH3BzAw93hZs7uLsZwyrd3Iy/M5bJrJBCCCGEEOJmIsGuUkBrjdVqZAkkJGh++Q1atYR6dRW799h4bgQMfgx8vGHffiOgNeRpTVw8pKcb25j5ybW2Dw4WI2PLZII2raFdO0WtW4zHFEIIceMoZcxue9utMPgxRUqKEfDauUuzcxfsP2AEugCGj4S6dYzhjfHx8OlMhb+/5oOPITzcGGru4wPrN0AFH4iINIJip08bAS20cfvKgFhunJx0ZiDM0xM83MHDEzw8wNNDZS7zzFjmacw86e5uDN0UQgghhBCiLJFgVzG4eFGjNZl1WL762kZQRaPAe2Sk5qWXoUUzqFbNyAbYshXmzQdrusZ6edjhvPlw5cVMYmLej+fgABUqwC01oH59aNcG6tRRMvOXEEKUACcnRfNmRvYsQEqK5vgJOHQYDh3SHDoMp0OMYeb3PqhxcTayv5KSsmfkJiUbP3okXO7/ExKgZg0ICoJ//4M7B0CzprDgGwgLg0GPGrPj7tylsdmMbLCEBKNoflQ0nAoxaorFx+urMn8zmEzg4W5kk/lWiMHV1YaXJ3h6gbeXESTz8jSCY15eWX87OsrnjRBCCCGEKDkS7ALOndecOgVt2xi/YB8/oVm7TuPsrNAazl/QXLoE/v5gs8KZs0ZB92rVjCLD+/eD1WYEmQBSU4xixGazcdtqNS4YLBZNauqVFy9ZVxcb/gX+zdqn1NTc99VkMrbr7w+1b4WUVGN2xFq1oGEDqH0bmM2mG3uAhBBC3DBOTor69Ywh5GAEhZKSjADYqVNw8rTxmXTqFISGZd0vNtbo/00mY3h6QADUqAGNGhjBrr/+hj8WZbX/egEE+GvOnDWygNu3Ne6zabNRSP+NqVCvrokvvrKRlATduxr3O3UaQs4aM0smJUNykhFgS0kxgmjHj0NMLCQn551N5uKs8fIic8ilszNYLMaQem9veGKwws1NAmJCCCGEEKJo3HTBrvR0TVqa8cU/Pd0oEvznX5pvvoVbb4URz8HPv2rWrYfrDQs5cjTntrPftlqz/rbZjPVX/nru6GgEyCwWo56Ljze4uoGri3Hf6tWgalUI9IcWLRTe3jKcRAghyiMXF2O224YNICMABpCYqDl3Hi5cgAsX4cIFzfkLxu3IKFi9xvgH2T9zwMjiOp2UFSDb+N8V6xLh5dFQt46NTZuNZQcOGoEo4/MvN9k/5B6838ji2roNjhyBDu2Nz9TjJyHmklF3LCkJzp839i1jghSTCU6e1NStq2lQX3HxoubEKdA2o01yitEuwA+eGSZZyUIIIYQQouBKXbBr23bNwu+MIRcODjGkptrQGsaPVQQGKJYs0/z+hzamcdfGF2MNfDZT4eio+HKeZvkKTVo6pF8Oarm5w4/fGtlOY8Zp/tuU/TFr3QJDnjR+Kf/wY+PX9SsFtzaGGYaGG9PEW63GP2cXCPCHRg2NQJWXF5w7b9RXSUqCihWhahVjFi2LxQhuyZd2IYQQ+eXqmlX/y5D9MyQ93cg8joo2Mo2jo+FSjBEkS0w0hrwnJBpZYefPG4Gk1FTjB5a4ODh4yChgn5wCe/YWbN++/zH77WUr8n/fLduMf9f7Uem7HzVaG/XGLI5GXbP0dJg8Ebp2NnHkqOannzVPPqGoGKjYvUfzy2+aF19Q+HjL560QQgghxM2q1AW7bDZjqIRSWUM1TFeMynO0GMVzlcr+L0PFQGjQwBgq4XB5yIS7e9b6fn2N2ikWCziYwcnJqG8V3NrYSOeOxhdvZxdwcQYXF5nFSgghROnk4KDw8wM/v5xrCva5lZKiCQs3AmApKZrkZOOzuEF948ebk6cgPsGV2NhEdu8xPlfr1IaaNWH258aw/rp1ISICFv1p3K9TR2Po/4czjSGU7dsZdcp+/d1Yd3sfOHAI5i+AHt1hwB2wdh388hu0bgmVq8CxY0ZB/6ZNwD/A+PvECTJjZLGxsHuvsY9g7P+Jk5CWRykAIYQQQghxc1Ba51WWNrvo6Oii3per+Pj4lMjjiixyDkqenIOSJ+eg5Mk5KHlyDq7Nx8enQO0LcyzlXBQ/OebFS4538ZNjXvzkmBc/OebFz95jXtDvVbmRSuZCCCGEEEIIIYQQotyQYJcQQgghhBBCCCGEKDck2CWEEEIIIYQQQgghyg0JdgkhhBBCCCGEEEKIckOCXUIIIYQQQgghhBCi3Mj3bIxCCCGEEEIIIYQQQpR2ktklhBBCCCGEEEIIIcoNCXYJIYQQQgghhBBCiHJDgl1CCCGEEEIIIYQQotyQYJcQQgghhBBCCCGEKDck2CWEEEIIIYQQQgghyo1iDXYtXLiQbt260ahRI+677z727Nlzzfbz5s2jd+/eNG7cmM6dO/PGG2+QkpKSuf7jjz+mTp062f716dOnqJ9GmVaQc5CWlsbMmTPp0aMHjRo1YsCAAaxbt65Q2xQ3/hzI+yD/tm7dyrBhw+jQoQN16tRh5cqV173P5s2bufvuu2nYsCE9e/bk119/vaqNvAfyryjOgbwHCqag5yAsLIxRo0bRu3dv6taty7Rp03Jtt2TJEvr06UOjRo3o378/a9euLYrdv6lJX2Of2bNnc88999CsWTPatm3Ls88+y4kTJ7K1SUlJYdKkSQQHB9OsWTOef/55IiIisrU5f/48Q4cOpUmTJrRt25a33nqL9PT0bG3y85lxM/r888+pU6dOtv5DjvmNFxoayv/+9z+Cg4Np3Lgx/fv3Z+/evZnrtdZ8+OGHdOjQgcaNGzN48GBOnTqVbRuXLl1i1KhRNG/enJYtW/Laa6+RkJCQrc2hQ4d4+OGHadSoEZ07d2bOnDnF8fRKFavVygcffEC3bt1o3LgxPXr0YNasWWitM9vI8S68631nKc5jfDN8z7nW8U5LS+Ptt9+mf//+NG3alA4dOvDKK68QGhqabRul6njrYvL333/rBg0a6J9//lkfPXpUjxs3Trds2VJHRETk2n7RokW6YcOGetGiRfrMmTN6/fr1un379vqNN97IbPPRRx/pfv366bCwsMx/kZGRxfWUypyCnoMZM2boDh066DVr1uiQkBC9cOFC3ahRI71//367t3mzK4pzIO+D/FuzZo1+77339PLly3Xt2rX1ihUrrtk+JCREN2nSRE+fPl0fO3ZML1iwQNerV0+vW7cus428BwqmKM6BvAcKpqDn4MyZM3rKlCn6t99+03feeaeeOnXqVW22b9+u69Wrp+fMmaOPHTum33//fd2gQQN9+PDhonoaNx3pa+z3xBNP6F9++UUfOXJEHzx4UA8ZMkR36dJFJyQkZLZ5/fXXdefOnfW///6r9+7dq++//379wAMPZK5PT0/Xd9xxhx48eLA+cOCAXrNmjQ4ODtbvvvtuZpv89Fc3o927d+uuXbvq/v37Z+s/5JjfWJcuXdJdu3bVo0eP1rt379YhISF6/fr1+vTp05ltZs+erVu0aKFXrFihDx48qIcNG6a7deumk5OTM9s8+eSTesCAAXrXrl1669atumfPnvqll17KXB8XF6fbtWunR40apY8cOaL/+usv3bhxY/39998X6/MtaZ9++qlu3bq1Xr16tT5z5oxesmSJbtq0qf76668z28jxLrzrfWcprmN8s3zPudbxjo2N1YMHD9Z///23Pn78uN65c6e+99579d13351tG6XpeBdbsOvee+/VkyZNyrxttVp1hw4d9OzZs3NtP2nSJP3YY49lWzZ9+nT94IMPZt7+6KOP9IABA4pmh8uhgp6D9u3b62+++SbbsuHDh+tRo0bZvc2bXVGcA3kf2Cc/F/kzZszQ/fr1y7Zs5MiR+oknnsi8Le8B+92ocyDvAfvl5xxc6dFHH8012PXCCy/ooUOHZlt233336fHjxxd6H4VB+pobJzIyUteuXVtv2bJFa218gW/QoIFesmRJZptjx47p2rVr6507d2qtjQuAunXr6vDw8Mw23377rW7evLlOSUnRWuevv7rZxMfH6169eumNGzdm6z/kmN94b7/9tn7ooYfyXG+z2XT79u313LlzM5fFxsbqhg0b6r/++ktrnXUO9uzZk9lm7dq1uk6dOvrixYtaa60XLlyoW7VqlXkOMh67d+/eN/oplWpDhw7VY8aMybbsyu/ocrxvvJzfWYrzGN+M33Py8x1x9+7dunbt2vrcuXNa69J3vItlGGNqair79++nXbt2mctMJhPt2rVj586dud6nWbNm7N+/PzNF/8yZU93A9AAAGA1JREFUM6xdu5bOnTtna3f69Gk6dOhA9+7dGTVqFOfPny+6J1KG2XMO0tLScHR0zLbMycmJHTt22L3Nm1lRnIMM8j4oGrt27aJt27bZlnXo0IFdu3YB8h4oDtc7BxnkPVCy8nuehH2kr7mx4uLiAPDy8gJg3759pKWlZTu+tWrVolKlSpmv4V27dlG7dm38/Pwy23To0IH4+HiOHTuW2UbeB9lNnjyZzp07Zzu2IMe8KKxatYqGDRsyYsQI2rZty1133cWPP/6Yuf7s2bOEh4dnO+YeHh40adIksx/ZuXMnnp6eNGrUKLNNu3btMJlMmddku3btomXLltm+n3bo0IGTJ08SExNT1E+z1GjWrBmbNm3i5MmTgDEsa/v27XTq1AmQ410civMYS1+Tu/j4eJRSeHp6AqXveDvY86QKKjo6GqvViq+vb7blvr6+V9VMyNC/f3+io6N5+OGH0VqTnp7Ogw8+yLBhwzLbNG7cmOnTp1OzZk3Cw8OZNWsWjzzyCH/++Sfu7u5F+pzKGnvOQYcOHZg3bx6tWrWiWrVq/Pfff6xYsQKr1Wr3Nm9mRXEOQN4HRSkiIiLbl2wAPz8/4uPjSU5OJiYmRt4DRex658DZ2VneA6VAbufJ19f3qvo7wj7yeXvj2Gw23njjDZo3b07t2rUB4/VrsVgyv6xn8PX1JTw8PLNNbn0RcN02V/ZXN5O///6bAwcO8PPPP1+1To75jXfmzBm+++47Hn/8cYYNG8bevXuZOnUqFouFu+++O/OY5daPZPTVERERVKhQIdt6BwcHvLy8sh3zKlWqZGuTcQ4iIiIyg8jl3dChQ4mPj6dv376YzWasVisvvvgiAwYMAJDjXQyK8xjL95yrpaSk8M4779CvX7/M79ul7XgXS7DLHps3b2b27NlMmDCBxo0bExISwrRp05g1axbPPfccQLYsr7p169KkSRO6du3KkiVLuO+++0pq18uNsWPHMm7cOPr27YtSiqpVqzJw4EB++eWXkt61m0Z+zoG8D8TNTt4DQoj8mjRpEkePHuXbb78t6V0p1y5cuMC0adP48ssvcXJyKunduSlorWnYsCEvvfQSAPXr1+fo0aN8//333H333SW8d+XPkiVL+PPPP3n33Xe59dZbOXjwINOnTycgIECOtyj30tLSeOGFF9BaM2nSpJLenTwVyzBGHx8fzGYzkZGR2ZZHRkZeFbHL8OGHHzJgwADuu+8+6tSpQ8+ePXnxxRf5/PPPsdlsud7H09OTGjVqEBIScsOfQ1lnzzmoUKECn3zyCbt27WL16tUsXboUV1dXqlatavc2b2ZFcQ5yI++DG8fPz++qXxAiIiJwd3fH2dlZ3gPF4HrnIDfyHih+uZ0neR/cONLX3BiTJ09mzZo1fP3111SsWDFzuZ+fH2lpacTGxmZrHxkZib+/f2ab3Poi4LptrtVflVf79+8nMjKSgQMHUr9+ferXr8+WLVtYsGAB9evXl2NeBPz9/alVq1a2ZbfcckvmsP6MY3atfsTPz4+oqKhs69PT04n5//buPSiq8o0D+BcQdZRM80KahY7GorvIcgtSCQJSTErCC1p4GQPTsiKJ8ZaBThmSWiNGA5LXzFuYFzBBBUXlIqKRBIiKAkJJpkhg3OT9/eFwfm276CIs6Pr9zDAT533Pe57zvp7D7tN73nPrllbj8jjdj8LCwjBr1iyMHTsWMpkMXl5emD59OiIjIwGwv9tCW/YxP+f8X11dHQICAlBaWor169erPEXxsPV3myS7OnbsCLlcjtTUVGlbQ0MDUlNTYW1trXGf6upqGBqqhmdkZAQAKq90/beqqioUFxdLHUn/9yBj0KhTp04wNTVFfX09EhIS4Obm1uI2H0e6GANNeB20HqVSibS0NJVtKSkpUCqVAHgNtIX7jYEmvAba3oOME2mP95qWEUJg2bJlOHToEDZt2qT2P4wUCgWMjY1V+regoAClpaXSv2GlUon8/HyVL1UpKSkwMTHB4MGDpTq8Du5ydHTE/v37sWfPHulHoVDgtddek/6bfd66bGxspPWjGl25cgXPPPMMAKB///7o3bu3Sp9XVlYiKytLuo9YW1ujoqIC2dnZUp20tDQ0NDRg2LBhAO72+enTp1FXVyfVSUlJwcCBAx+rR+qqq6thYGCgss3IyEj6nsr+1r227GPea+5qTHQVFhZi48aN6NGjh0r5Q9ffzVrOvgXi4uKEQqEQu3fvFhcvXhRLliwRdnZ20htWgoKCxMqVK6X6a9asEdbW1iI2NlYUFRWJEydOCHd3d/Hhhx9KdUJDQ0V6erooLi4WmZmZYsaMGcLBwYGvnG9Cc8fgl19+EfHx8aKoqEhkZGSIadOmCVdXV3Hr1i2t2yRVuhgDXgfaq6ysFDk5OSInJ0eYm5uLDRs2iJycHOkNIitXrhRBQUFS/cZXmq9YsUJcvHhRfP/992qvNOc10Dy6GANeA83T3DEQQkj133jjDTFv3jyRk5MjLly4IJVnZmaKoUOHiu+++05cvHhRrFmzRi9fyd2eeK95cMHBwcLW1lakp6eLsrIy6eeff/6R6nz66afCxcVFpKaminPnzgkfHx/h4+MjldfX1wtPT08xc+ZMkZubK5KTk4Wjo6NYtWqVVEeb+9Xj7L9vc2Wft66srCwxdOhQ8e2334orV66Iffv2CSsrK7F3716pTmRkpLCzsxOHDx8WeXl5Ys6cOcLV1VVUV1dLdd5++23h5eUlsrKyxOnTp8WoUaPEvHnzpPKKigoxfPhwERQUJPLz80VcXJywsrIS27dvb9PzbW/z588XTk5OIikpSRQXF4uEhATh4OAgwsLCpDrs75a732eWturjx+Vzzr36u7a2VsyePVu89NJLIjc3V+Xv6b/frPgw9XebJbuEEGLLli3CxcVFyOVyMWHCBPHLL79IZb6+vmL+/PnS73V1dSI8PFy4u7sLS0tL4ezsLEJCQlS+5AcEBIgRI0YIuVwunJycREBAgCgsLGzLU3rkNGcM0tPTxZgxY4RCoRAvvPCCCAoKkl4Zqm2bpK61x4DXgfbS0tKEubm52k9jn8+fP1/4+vqq7TNu3Dghl8uFm5ubiImJUWuX14D2dDEGvAaa50HGQFP9l19+WaXOgQMHxKhRo4RcLhdjx44VR48ebbNzelzwXvNgNP37NTc3V7mXVFdXi5CQEGFvby+srKzEe++9J8rKylTauXr1qvDz8xPDhg0TDg4OIjQ0VNTV1anU0eZvxuPqv8ku9nnrS0xMFJ6enkKhUAgPDw+xY8cOlfKGhgbx9ddfi+HDhwuFQiGmT58uCgoKVOrcvHlTzJs3TyiVSmFjYyMWLFggKisrVerk5uaKKVOmCIVCIZycnERkZKTOz+1h8/fff4vPPvtMuLi4CEtLS+Hm5iZWr16t8qWf/d1y9/vM0pZ9/Dh8zrlXfxcXFzf59zQtLU1q42HqbwMhmngmkIiIiIiIiIiI6BHTJmt2ERERERERERERtQUmu4iIiIiIiIiISG8w2UVERERERERERHqDyS4iIiIiIiIiItIbTHYREREREREREZHeYLKLiIiIiIiIiIj0BpNdRERERERERESkN5jsIiIiIiIiIiIivcFkFxERERERPVJkMpnKj4WFBWxtbTFp0iRs3LgRdXV17Rbb7t27IZPJEB4e3mptFhYWQqFQYMWKFS1ua+rUqZDJZLh69arKdldXV8hksha33xSZTAZXV1edtd/Wx/m3nJwcyGQyrFu3rk2PS0RN69DeARARERERET2IN954AwBw584dlJSU4OzZs8jKysLRo0cRHR2NDh304+vOqlWrYGxsDH9///YOhTQYOnQoXF1dERUVhYkTJ6J79+7tHRLRY08/7v5ERERERPTYCQ0NVfk9KysLU6dORWpqKuLi4jBu3Lh2iqz1/Pbbb4iPj8fUqVPx1FNPtXc4D70DBw7A2Ni4zY/7zjvvIDExEevWrUNQUFCbH5+IVPExRiIiIiIi0gtWVlbSbK8TJ060czStY9u2bQAALy+v9g3kETFo0CA899xzbX5cpVIJMzMzxMTEoLa2ts2PT0SqmOwiIiIiIiK98fzzzwMAbty4obJdCIHY2Fh89NFHGD16NJRKJaytrTFhwgRs3boVDQ0Nam2Fh4dDJpNh9+7dOH/+PGbPng17e3solUr4+vrizJkzzYpt/fr1sLCwgIeHB37//ff71q+qqkJcXBwGDBgAhUKhVl5WVoZ169bB19cXTk5OUCgUGDFiBObOnYtff/21WbE9qOTkZMyePRvDhw+HQqGAs7Mz3nnnHcTHx2usf+fOHURFRWH06NFS/S+//FJjgig3NxdhYWHw9vaGo6MjFAoF3NzcEBISgmvXrmlsX9OaXenp6ZDJZFiwYAHKy8sRHByMkSNHQqFQwNPTEz/++KPGtvLz8/Hxxx/Dzc0NlpaWcHR0xLhx4/D555+jrKxMrf7YsWNx8+ZNHD58+H7dRkQ6xmQXERERERHpjaqqKgBQe+SvtrYWgYGBSElJQa9evfDyyy9DqVTi4sWLWLZsGRYtWtRkm9nZ2fDx8UFJSQlGjhwJMzMzZGRkYMaMGcjPz9cqrtWrV2PFihWQy+X44Ycf0Ldv3/vuk5GRgdu3b+OFF17QWH7kyBGsXLkS169fh0wmg7u7O/r06YNDhw7hzTff1PnsttDQUPj7++PYsWMwMzPD6NGj8dxzz+HMmTOIiIjQuE9gYCC+/fZbDBw4ECNHjkRVVRWio6M19n9UVBQ2bdoEALC1tYWzszOEENi2bRvGjx/fZMKrKRUVFfDx8UFiYiJsbW1hY2ODgoICLF68GLt27VKpm52djQkTJmD//v3o2rUr3NzcoFQqUV9fj82bN+Py5ctq7TeO09GjR5sVFxG1Pq7ZRUREREREeuP48eMAACcnJ5XtRkZG+Oabb+Ds7KyyptONGzfg7++Pn376CePHj4e9vb1am1u3bsXixYsxbdo0advy5cuxadMmREdHIywsrMl4GhoaEBISgh07dsDBwQEREREwMTHR6lxOnz4NALC0tNRYbmNjg9jYWGk2W6Pjx49jzpw5WLp0KRISEmBgYKDV8Zpj79692LBhA/r06YOoqCgMGTJEKquurkZmZqbaPiUlJejcuTMSEhLQu3dvAEBxcTG8vb2xf/9+fPDBByqPIPr4+GDx4sXo1auXtK2hoQEREREIDw/H119/jS+++ELrmI8cOYKxY8ciNDQUHTt2BAAcPnwY7733HiIiIjBx4kSp7pYtW1BTU4P58+dj5syZKu1cunQJTzzxhFr7lpaWMDQ0REZGhtYxEZFucGYXERERERE90hoaGlBUVITg4GBkZGTAzc0Nr776qkqdDh06wN3dXW3x8qeeegqBgYEA7iZDNLGxsVFJdAHAnDlzAPw/IaVJbW0tPvroI+zYsQPu7u6Ijo7WOtEFAOfPnwcADBw4UGO5TCZTS3QBdxN9Hh4eKCoq0nrmWXNFRkYCABYuXKiS6AKAzp07Y8SIERr3++STT6REFwA8++yzeP311wGo96Wjo6NKogsADA0NMXfuXJiamiIxMbFZMZuYmGDJkiVSogsA3N3dYW5ujtLSUly9elXa3vgY7PDhw9XaGTRoEPr06aOx/d69e6O0tBS3bt1qVmxE1Lo4s4uIiIiIiB5JMplMbdukSZOwbNmyJmcz5ebm4sSJEygtLUV1dTWEENKjj1euXNG4j6bETY8ePdC9e3eNazcBwO3btzF79mycPHkS3t7e+Oyzz2BkZKTlmd31119/AQC6devWZJ3a2lokJyfj3LlzuHHjBurq6gBASnIVFhZq7KeWuHbtGi5duoRu3bphzJgxWu9nbGwMBwcHte0DBgwAAPz5559qZTdv3kRiYiIuXLiAiooKaW21+vp6lJeXo7y8HN27d9fq+HK5HD169NB4/Pz8fPz555/o37+/VDc5ORlLly5FQEAAbG1t0aHD/b8+P/nkk7h27Rpu3LiBJ598Uqu4iKj1MdlFRERERESPpMY3L9bU1CAvLw8FBQXYuXMnrK2t4e3trVK3trYWCxcuRGxsbJPtNSa9/uvpp5/WuL1r164oLy/XWLZ582bU19fD2dkZy5cvf6BHCSsrK6XjaHL+/HnMmTMHJSUlTbbR1Dm1xB9//AHg7qys5pxXr169NCb8Gs/vv4vUx8bGYsmSJbh9+3aTbVZVVWmd7LrXOP73+H5+fsjMzMSpU6cwbdo0dOnSBdbW1nB2doa3t7fGxxgBSDP3/v77b61iIiLdYLKLiIiIiIgeSaGhoSq/R0dH48svv8SyZcvg4OCAZ555RirbuHEjYmNjYW5ujqCgIMjlcnTr1g3Gxsa4fPkyPDw8mjyOoWHzV39xcnLC6dOncfLkScTHx9+z/aY0Jk40JayEEAgICEBJSQkmT56MKVOmoH///ujatSsMDAywevVqREZGQgjR7OPqSnP6saSkBAsWLAAALFq0CC4uLjA1NUXnzp0BAJMnT8bZs2ebdX7NOb6JiQk2b96MzMxMJCUl4dSpU0hLS8PJkycRFRWFrVu3SjPS/q0xQdlUMoyI2gbX7CIiIiIiIr3g5+eHkSNH4p9//sHatWtVyg4dOgTg7lsRX3rpJfTs2VNav6u4uLjVY5HL5fjuu+/QuXNnBAYGIiEhodlt9OzZEwA0rv9UUFCAgoICKBQKLF26FBYWFjAxMZFmWuninBo1zpAqLi7WWTLt2LFjqKurw9SpUzF9+nSYmZlJia7GY+uagYEB7OzsEBQUhF27duH48ePw9PTE9evX8dVXX2ncp3Gs/vs2UCJqW0x2ERERERGR3mhcbH7fvn0qj/dVVFQA0Pwo288//6yTWKysrBAdHY1OnTph3rx5OHz4cLP2t7CwAABcvnxZrawxqaLpfG7duoWUlJQHiFg7pqamGDRoECoqKnTWd/car4yMDFy/fl0nx72Xnj17Yu7cuQCACxcuqJVXVlairKwM/fr143pdRO2MyS4iIiIiItIbQ4cOhbu7O+rr6xEdHS1tb3zkbNu2bSr1Dx48iL179+osHmtra0RHR8PY2BgBAQHNeoOgnZ0dAODcuXNqZWZmZjA0NERaWprKwvo1NTUIDg5uci2x1jJr1iwAdx8lzcvLUymrqanByZMnW9R+43jt27dPZc2ua9euITg4uEVta2Pbtm0aZ48dO3YMANC3b1+1snPnzkEIAXt7e53HR0T3xjW7iIiIiIhIr7z//vs4cuQIYmJi8O6776J3797w8/PD8ePHsWrVKhw8eBADBw7ElStXkJ2djZkzZ2L9+vU6i8fGxgbr1q2Dv78/PvjgA6xduxYuLi733c/Ozg5dunTBqVOn1Mp69uyJCRMmYOfOnRg3bhwcHR3RqVMnZGZm4s6dO/D29sbu3bt1cDZ3eXl5ITs7G1u2bIG3tzeUSiX69u2LsrIy5OXloV+/fi1KIrq6uuL5559HdnY2Ro0aBRsbG9TU1CA9PR0WFhawtrbG2bNnW/GMVG3fvh0hISEYPHgwBg0aBCMjIxQUFCAvLw+dOnXCu+++q7ZPeno6AGg1tkSkW5zZRUREREREesXCwgKvvPIKampqsGHDBgCAvb09fvjhBzg6OuLq1atISkqCsbExwsPD8dZbb+k8Jjs7O0RFRcHY2Bjvv/8+kpOT77tP165d4enpicLCQvz6669q5SEhIViwYAH69++P1NRUZGZm4sUXX0RMTAz69euni9NQ8cknnyAiIgIvvvgiLl26hPj4eBQVFcHW1lZ63O9BdezYEVu3bsWUKVPQsWNHJCUl4dKlS/D19cWGDRuk9dZ05cMPP8T48eNhYGCA1NRUJCUlobq6GhMnTsSePXtga2urtk9cXBx69OgBd3d3ncZGRPdnIB6m13MQERERERGRJDc3F15eXvD19cWSJUvaOxxqwtmzZzF58mT4+fkhKCiovcMheuxxZhcREREREdFDasiQIfDw8EBMTAz++uuv9g6HmhAVFYVu3brB39+/vUMhIjDZRURERERE9FALDAxUW3CfHh45OTlITEzErFmz0L179/YOh4jAxxiJiIiIiIiIiEiPcGYXERERERERERHpDSa7iIiIiIiIiIhIbzDZRUREREREREREeoPJLiIiIiIiIiIi0htMdhERERERERERkd5gsouIiIiIiIiIiPQGk11ERERERERERKQ3mOwiIiIiIiIiIiK9wWQXERERERERERHpjf8BGfmnWDQ9BFYAAAAASUVORK5CYII=", "text/plain": [ "