{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "(GP-MeansAndCovs)=\n", "# Mean and Covariance Functions\n", "\n", ":::{post} Mar 22, 2022\n", ":tags: gaussian process\n", ":category: intermediate, reference\n", ":author: Bill Engels, Oriol Abril Pla\n", ":::" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2017-09-18T00:02:42.01056Z", "start_time": "2017-09-18T00:02:41.245299Z" }, "papermill": { "duration": 5.306978, "end_time": "2020-12-22T18:36:31.587812", "exception": false, "start_time": "2020-12-22T18:36:26.280834", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "import arviz as az\n", "import matplotlib.cm as cmap\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pymc as pm\n", "import pytensor\n", "import pytensor.tensor as pt\n", "import scipy.stats as stats" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "papermill": { "duration": 0.047175, "end_time": "2020-12-22T18:36:31.674100", "exception": false, "start_time": "2020-12-22T18:36:31.626925", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "RANDOM_SEED = 8927\n", "\n", "rng = np.random.default_rng(RANDOM_SEED)\n", "az.style.use(\"arviz-darkgrid\")\n", "plt.rcParams[\"figure.figsize\"] = (10, 4)" ] }, { "cell_type": "markdown", "metadata": { "papermill": { "duration": 0.037844, "end_time": "2020-12-22T18:36:31.751886", "exception": false, "start_time": "2020-12-22T18:36:31.714042", "status": "completed" }, "tags": [] }, "source": [ "A large set of mean and covariance functions are available in PyMC. It is relatively easy to define custom mean and covariance functions. Since PyMC uses PyTensor, their gradients do not need to be defined by the user. \n", "\n", "## Mean functions\n", "\n", "The following mean functions are available in PyMC.\n", "\n", "- {class}pymc.gp.mean.Zero\n", "- {class}pymc.gp.mean.Constant\n", "- {class}pymc.gp.mean.Linear\n", "\n", "All follow a similar usage pattern. First, the mean function is specified. Then it can be evaluated over some inputs. The first two mean functions are very simple. Regardless of the inputs, gp.mean.Zero returns a vector of zeros with the same length as the number of input values.\n", "\n", "### Zero" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "ExecuteTime": { "end_time": "2017-09-18T00:05:07.845415Z", "start_time": "2017-09-18T00:05:07.816687Z" }, "papermill": { "duration": 1.075408, "end_time": "2020-12-22T18:36:32.865469", "exception": false, "start_time": "2020-12-22T18:36:31.790061", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0. 0. 0. 0. 0.]\n" ] } ], "source": [ "zero_func = pm.gp.mean.Zero()\n", "\n", "X = np.linspace(0, 1, 5)[:, None]\n", "print(zero_func(X).eval())" ] }, { "cell_type": "markdown", "metadata": { "papermill": { "duration": 0.040891, "end_time": "2020-12-22T18:36:32.947028", "exception": false, "start_time": "2020-12-22T18:36:32.906137", "status": "completed" }, "tags": [] }, "source": [ "The default mean functions for all GP implementations in PyMC is Zero.\n", "\n", "### Constant\n", "\n", "gp.mean.Constant returns a vector whose value is provided." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "ExecuteTime": { "end_time": "2017-09-18T00:05:09.813946Z", "start_time": "2017-09-18T00:05:09.779518Z" }, "papermill": { "duration": 2.12553, "end_time": "2020-12-22T18:36:35.113789", "exception": false, "start_time": "2020-12-22T18:36:32.988259", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[25.2 25.2 25.2 25.2 25.2]\n" ] } ], "source": [ "const_func = pm.gp.mean.Constant(25.2)\n", "\n", "print(const_func(X).eval())" ] }, { "cell_type": "markdown", "metadata": { "papermill": { "duration": 0.039627, "end_time": "2020-12-22T18:36:35.195057", "exception": false, "start_time": "2020-12-22T18:36:35.155430", "status": "completed" }, "tags": [] }, "source": [ "As long as the shape matches the input it will receive, gp.mean.Constant can also accept a PyTensor tensor or vector of PyMC random variables." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "ExecuteTime": { "end_time": "2017-09-18T00:05:11.97429Z", "start_time": "2017-09-18T00:05:11.939523Z" }, "papermill": { "duration": 1.408839, "end_time": "2020-12-22T18:36:36.644770", "exception": false, "start_time": "2020-12-22T18:36:35.235931", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1. 1. 1. 1. 1.]\n" ] } ], "source": [ "const_func_vec = pm.gp.mean.Constant(pt.ones(5))\n", "\n", "print(const_func_vec(X).eval())" ] }, { "cell_type": "markdown", "metadata": { "papermill": { "duration": 0.04127, "end_time": "2020-12-22T18:36:36.726017", "exception": false, "start_time": "2020-12-22T18:36:36.684747", "status": "completed" }, "tags": [] }, "source": [ "### Linear\n", "\n", "gp.mean.Linear is a takes as input a matrix of coefficients and a vector of intercepts (or a slope and scalar intercept in one dimension)." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "ExecuteTime": { "end_time": "2017-09-18T00:05:14.707255Z", "start_time": "2017-09-18T00:05:14.62575Z" }, "papermill": { "duration": 0.073879, "end_time": "2020-12-22T18:36:36.839351", "exception": false, "start_time": "2020-12-22T18:36:36.765472", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 1.03424803 -2.25903687 0.78030931 0.9880038 -3.45565466]\n" ] } ], "source": [ "beta = rng.normal(size=3)\n", "b = 0.0\n", "\n", "lin_func = pm.gp.mean.Linear(coeffs=beta, intercept=b)\n", "\n", "X = rng.normal(size=(5, 3))\n", "print(lin_func(X).eval())" ] }, { "cell_type": "markdown", "metadata": { "papermill": { "duration": 0.03931, "end_time": "2020-12-22T18:36:36.918672", "exception": false, "start_time": "2020-12-22T18:36:36.879362", "status": "completed" }, "tags": [] }, "source": [ "## Defining a custom mean function\n", "\n", "To define a custom mean function, subclass gp.mean.Mean, and provide __call__ and __init__ methods. For example, the code for the Constant mean function is\n", "\n", "python\n", "import theano.tensor as tt\n", "\n", "class Constant(pm.gp.mean.Mean):\n", " \n", " def __init__(self, c=0):\n", " Mean.__init__(self)\n", " self.c = c \n", "\n", " def __call__(self, X): \n", " return tt.alloc(1.0, X.shape[0]) * self.c\n", "\n", "\n", "\n", "Remember that PyTensor must be used instead of NumPy." ] }, { "cell_type": "markdown", "metadata": { "papermill": { "duration": 0.039306, "end_time": "2020-12-22T18:36:36.998649", "exception": false, "start_time": "2020-12-22T18:36:36.959343", "status": "completed" }, "tags": [] }, "source": [ "## Covariance functions\n", "\n", "PyMC contains a much larger suite of {mod}built-in covariance functions . The following shows functions drawn from a GP prior with a given covariance function, and demonstrates how composite covariance functions can be constructed with Python operators in a straightforward manner. Our goal was for our API to follow kernel algebra (see Ch.4 of {cite:t}rasmussen2003gaussian) as closely as possible. See the main documentation page for an overview on their usage in PyMC." ] }, { "cell_type": "markdown", "metadata": { "papermill": { "duration": 0.039789, "end_time": "2020-12-22T18:36:37.078199", "exception": false, "start_time": "2020-12-22T18:36:37.038410", "status": "completed" }, "tags": [] }, "source": [ "### Exponentiated Quadratic\n", "\n", "$$\n", "k(x, x') = \\mathrm{exp}\\left[ -\\frac{(x - x')^2}{2 \\ell^2} \\right]\n", "$$" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "ExecuteTime": { "end_time": "2017-09-18T00:02:48.08335Z", "start_time": "2017-09-18T00:02:47.649571Z" }, "papermill": { "duration": 7.505078, "end_time": "2020-12-22T18:36:44.626679", "exception": false, "start_time": "2020-12-22T18:36:37.121601", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/MAAAGbCAYAAACIxMC9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADw+UlEQVR4nOzddXgUxxvA8e+e5GIQgkNwCe7ubi1QrLh7C7TUkAqlUJy2eClWKFqK9UexFnd3dwsOISQkOZ3fH1fSUgIESHK55P08Dw/J7d7ue5nbuXlvZmc0pZRCCCGEEEIIIYQQbkPn6gCEEEIIIYQQQgjxaiSZF0IIIYQQQggh3Iwk80IIIYQQQgghhJuRZF4IIYQQQgghhHAzkswLIYQQQgghhBBuRpJ5IYQQQgghhBDCzUgyL4QQQgghhBBCuBlJ5oUQQgghhBBCCDcjybwQQgghhBBCCOFmDK4OQAghRMJz+fJlfvnlF3bv3s2NGzew2+34+/uTJk0aihQpQpkyZahTp46rw4x1y5YtY+DAgTRu3JiRI0e6OpxnHDx4kEmTJnH8+HEePXqEUooRI0bQpEkTV4cWr65fv06NGjUICAhg48aNrg4nis1mY9WqVWzYsIHjx48THByM1WrFz8+PnDlzUqJECerVq0dgYOAzz61evTpBQUFPPWY0GkmdOjVFixalbdu2lCxZMr5eykvlyZMHgDNnzrg4EiGESLokmRdCCPGUP//8k08++QSLxUKKFCkoXrw4/v7+PHr0iFOnTjF//nxWrVqVKJP5hOz27dv06NGD0NBQSpQoQUBAADqdjixZsrg6tFjXrl079u7dyy+//EKZMmVcHU6MnDx5kg8//JCrV6+iaRq5cuUiX758eHp6EhwczPHjx9mzZw9TpkyhQ4cOfP7559Eep3jx4mTNmhWAR48ecfz4cdasWcPatWvp378/nTp1is+XJYQQIgGTZF4IIUSUe/fu0b9/fywWC507d6Zv376YTKan9jl+/Djr1q1zUYRJ144dO3j06BH169fnu+++c3U44l+OHz9O27ZtiYiIoFq1agwYMIBs2bI9tY/D4WDXrl389NNPXLhw4bnHevfdd58aaWE2mxk0aBArVqxgzJgxVK1alezZs8fVS4mx1atXuzoEIYRI8iSZF0IIEWXTpk2Eh4eTNm1a+vfvH+0+BQsWpGDBgvEcmbhx4wbAM0micC2r1cqHH35IREQEderUYdy4ceh0z05JpNPpqFChAhUqVODo0aMxPr7JZGLQoEH8+eefhIeH89dff9G9e/fYfAmvJWfOnK4OQQghkjyZAE8IIUSU+/fvA5AyZcpXfu758+eZMGECLVu2pFKlShQsWJAyZcrQsWPH5/bi7dmzhzx58tCuXTssFguTJk2iTp06FCpUiKpVqzJmzBjMZjMAoaGhjBo1iho1alCoUCGqV6/OxIkTsdlszxx3wIAB5MmTh2XLlnH69Gl69+5N2bJlKVy4MA0aNGDOnDnY7fZXfo23b99mxIgR1KtXjyJFilCsWDGaNm3KvHnzoo3DYrEwY8YMmjRpQrFixShYsCAVKlSgadOmjB49mocPH770nMuWLSNPnjxMnDgRgEmTJpEnTx7y5MlD9erVo/Z78hjA0qVLadGiBSVKlCBPnjxcv349ar+jR4/y4YcfUrFiRQoWLEi5cuXo2bMnO3bsiPb8//5bXrx4kb59+1KuXDmKFi1K06ZNWb9+fdS+R44coWfPnlF/6xYtWrBr164Y/W3hn/fD3r17AWjfvn3U63oSw38ppfj1119p0qQJRYsWpUSJEnTu3JlDhw499zyRkZHMmjWL5s2bU7JkSQoVKkSdOnUYPXo0wcHBMY4XYOXKlVy/fh0PDw8GDx4cbSL/X4ULF36lc/j4+ET1xv+7LF9k4sSJUe+boKAg+vXrR8WKFaNe68SJE4mMjHzmeU/ebwMGDODhw4cMGzaMmjVrUrBgQdq1axe137/fb//18OFDvv/+e95+++2o66RJkyZMnz492nP+ux6IiIhg/PjxUdfYv9/jQgghniY980IIIaJkyJABgHPnzrFr1y7KlSsX4+f+/PPPLFmyhBw5chAYGEjy5Mm5efMme/bsYdeuXRw5coSBAwdG+1yr1UqXLl04efIkpUuXJnv27Ozfv58ZM2Zw4cIFRo4cScuWLQkJCaFUqVJky5aNffv2MWnSJO7du8c333wT7XGPHj3K4MGDSZ06NeXKlePRo0fs2bOH4cOHc+DAAcaPH4+maTF6ffv27aNXr16EhIQQEBBA+fLlsVgsHDt2jKFDh7Jp0yamTp2K0WgEnMOqu3fvzq5du/D19aVkyZIkT56cBw8ecOXKFWbOnEmDBg1IkSLFC8+bJUsWGjduzKlTpzh9+jR58+YlX758APj7+z+z/9ChQ1mwYAHFihWjatWqXLt2Leo1Ll68mK+//hqHw0H+/PkpU6YMQUFBbNq0iU2bNtGnTx969+4dbRwnT55k6NChpEuXjnLlynHjxg0OHTpE7969GTduHAaDgb59+5I7d27KlSvHxYsXOXz4MF27dmXOnDkxmrwtderUNG7cmG3btnHv3j0qVqxImjRpnvpb/NfAgQP5448/KFGiBFWrVuXUqVPs2LGDffv2MW/ePIoUKfLU/rdv36Zr166cPXuWFClSUKhQIXx8fDh58iQzZ85k7dq1zJ07l4CAgJfGC7BhwwYAKlas+FpfgsVUWFgYAB4eHq/0vOvXr9OkSRMMBgMlS5bEbDazZ88eJk2axM6dO5k9e/Yzt9IABAcH07Rp06g5GgoUKBD13n6Ra9eu0aFDB4KCgkiZMiVVqlTBarWyZ88exo4dy5o1a/j555/x8/N75rlms5l27dpx4cIFSpYsSd68eWP0hZcQQiRZSgghhPhbWFiYqlSpkgoMDFR58uRRbdu2VZMnT1abN29W9+/ff+Fz9+zZo65evfrM4xcuXFCVK1dWgYGB6siRI09t2717twoMDFSBgYGqWbNm6sGDB1Hbrl+/rkqVKqUCAwNV/fr1VY8ePVR4eHjU9qNHj6r8+fOrvHnzqqCgoKeO279//6jjDh48WFmt1qhtZ8+eVWXLllWBgYFq4cKFTz1v6dKlKjAwUPXv3/+px+/cuaNKly6t8uTJo+bPn6/sdnvUtgcPHqj27durwMBANXHixKjH9+7dqwIDA1WjRo1UaGjoM3+Xo0ePPvV6X2bChAkqMDBQTZgwIdrtT15v8eLF1aFDh57Zfvr0aZU/f36VJ08etXz58qe2bd68WRUoUEAFBgaq7du3P7Xt33/LKVOmKIfDEbXtl19+UYGBgapy5cqqVKlSzxx32LBhKjAwUHXs2DHGr1Mppdq2basCAwPV7t27o91+7dq1qJiqVaumLl68GLXNZrOpgQMHqsDAQNW5c+ennudwOFTLli1VYGCg+vzzz58qF6vVqkaOHKkCAwNVu3btYhxrlSpVVGBgoJo8efIrvcb/qlatmgoMDFRLly59ZtupU6dU3rx5VWBgoFqyZEmMjvfk/RIYGKjee+89FREREbXt5s2bqnbt2iowMFCNHTv2qec9uQYCAwNVhw4don3vKvXP++2/3n33XRUYGKh69uypHj9+HPX4/fv3VePGjVVgYKD6+OOPn3rOv+uBBg0aqDt37sToNQohRFInw+yFEEJE8fHxYfbs2RQpUgSlFHv37mX8+PF0796dcuXK0ahRIxYuXBjtEPXSpUuTOXPmZx7PkSMH77//PgBr166N9ryapjFs2LCnepoDAgJo2LAh4OxdHDZsGF5eXlHbCxUqRKVKlXA4HFHDsv8rTZo0DBgwAIPhn4FouXPnplevXoBzNEFMzJkzh4cPH9KmTRtat2791FBqf39/Ro8ejdFoZP78+SilAOdkggAlSpTA19f3mWMWKlQo2p71N9W5c2eKFi36zOO//PILNpuNWrVq0ahRo6e2ValShRYtWgAwc+bMaI9buHBhevbs+dRIhlatWpEiRQpu3boV9f74t/feew9wjmqwWq2v/6Je4Msvv3xqQji9Xs9HH30EwN69e58677Zt2zh48CD58uXjm2++eapcDAYDn332GYGBgezZs4ezZ8/G6PxPhuU/r1d+9erVDBgw4Jl/Dx48eOmxQ0ND2bJlC3369MHhcJA2bVrq1asXo7ie8PT05JtvvsHT0zPqsfTp0zNgwAAAFixYEHUry78ZjUaGDh0a7Xv3efbv38+RI0fw8vJi6NCheHt7R21LmTIlQ4YMAZx/k1u3bkV7jEGDBj01GkMIIcTzyTB7IYQQT8mRIweLFy/m6NGjbN68mSNHjnDy5EkePHjAqVOnGDx4MH/++Sc//fTTM0N+Hz9+zNatWzl16lTUGtsAd+/eBeDSpUvRnjNjxozRrr39ZLK3ggULkipVquduv3PnTrTHrVevXrRDiBs1asTQoUO5fPkyt2/fJl26dNH/Mf62ZcuWqONFJ126dGTNmpXz589z+fJlsmfPToECBdDr9SxdupTs2bNTq1Yt0qZN+8LzxIa6detG+/iTLzwaN24c7fZmzZoxb9489u/fj91uR6/XP7W9cuXKz9ySYDAYCAgI4OHDh1SpUuWZY/r7+5MiRQoePnzIw4cPYz1JMxgMVKpU6ZnH06RJg5+fHyEhIU+d90k51q5d+6kveJ7Q6XSULFmSs2fPcujQoWjfk6/q2LFjLF++/JnHe/fuHe0XAAMHDoz2dpQsWbIwceLEpxLkmKhQoUK0f/dq1apFlc2JEycoXrz4U9vz5csX7ZdzL/LkPVapUiVSp079zPaCBQuSN29eTp8+zd69e6O+rHsiVapUMbodQwghhJMk80IIIaJVuHDhqIm6lFJR9xSvWrWKnTt38ssvv9C1a9eo/Tdu3MjAgQNfeI/rk/t+/+vJvfr/9SRxed52Hx8fgGh7FgEyZcoU7eO+vr5RiUxMkvlr164B0KZNmxfuB/DgwQOyZ89OlixZGDhwIKNHj2bIkCEMGTKEgIAAihYtStWqValbt+4r3/8cE8+71/v27dvA8/8mTxI3s9nMw4cPn/ny5GVl8KLtDx8+fG4ZvYk0adI89z5uX19fQkJCnjrvk3IcP34848ePf+GxY9JzDs4vLG7evPnc/fv37//UyhD58+d/4eSL/15n3mg0kjJlSooWLUqlSpWi/QLiZZ5X3kDUFzHR9ZLHdM6Af3vZewycX0qcPn06at83PacQQiRlkswLIYR4KU3TKFCgAN9//z0RERFs3LiR9evXRyXzt2/f5qOPPiIyMpKuXbvSoEEDMmXKhLe3Nzqdju3bt9OlS5fnHv9lM4DHZIbw1/VkWPyLOBwOAOrUqfPSntF/T2jXrl076tWrx8aNGzlw4AAHDhxg1apVrFq1iokTJzJ//vxY763/93Dq2OTKMoqtcz4pxxIlSkQ7md6/5c6dO0bHzJ8/Pzdv3uT48eOvFMvz/HedeVeJq/dRQjunEEK4M0nmhRBCvJKKFSuycePGp5bw2rhxI5GRkdSqVYvPPvvsmedcuXIlPkOM8rxlvMLCwqJGEKRPn/6lx8mQIQOXL1+mW7duFCpU6JViSJ06Nc2bN6d58+YAXLhwgS+++IJDhw7x3XffMWrUqFc63utKly4dV69e5dq1a9EOH3/ytzKZTNHONJ4YPBk9UKNGjRd+ufQqqlevzoYNG9i+fTsPHjyI0xntX8eLlrILCgoCeOnIlJh6cpwnIyCi82RbbJ1TCCGSMpkATwghRJSY9FLfuHEDeDoJDgkJAZz3vkd3zJUrV8ZShK9m7dq1WCyWZx7//fffAciaNWuMkoon92WvWbPmjWPKmTNn1IiGU6dOvfHxYqp06dIA0d6/DbBkyRIASpYs+VrDuWPTk6HzLxqO/joqV64MON8XMXmvx0TDhg0JCAjAbDYzZMiQWDtubNmxYwf3799/5vEtW7bw8OFDfHx8KFiwYKyc68l77MnSgv918uRJTp06hU6no1SpUrFyTiGESMokmRdCCBFlwYIF9O/fn4MHDz6zTSnFn3/+yfz58wF4++23o7blzJkTgHXr1j01GZ3dbmf8+PEcOnQojiOP3p07dxg1atRTSeGFCxeYMmUKAB06dIjRcbp27Ury5MmZPXs2s2bNivYLgmvXrkV9SQCwa9cutmzZ8sws7kopNm/eDET/5Udcad++PQaDgfXr1z8VJ8D27dv59ddfAeds+K725AuWc+fOxepxa9SoQaFChTh69CgDBw6M9j73kJAQFi5ciM1mi9ExPTw8GDduHCaTiTVr1tCrV6/njkQ5ePBgvCf7kZGRDB48mMjIyKjHbt++zciRIwFo2bJltJNEvo6SJUtSpEgRIiMjGTRoEBEREVHbHjx4wKBBgwB46623njvHghBCiJiTYfZCCCGiWK1WVqxYwYoVK0iZMiX58+cnRYoUhIaGcv78+ahhuQ0bNqRZs2ZRz6tWrRoFChTgxIkT1KlTh9KlS+Pl5cXRo0e5c+cO3bp1Y/r06fH+elq2bMlvv/3G5s2bKVKkCCEhIezZswer1UqtWrVo3bp1jI6TPn16pkyZQp8+fRg1ahQzZswgd+7cpEmThrCwMC5cuMDVq1cpUqQI77zzDgBnzpxhxIgR+Pr6kj9/ftKmTYvZbObkyZMEBQWRLFkyPvzww7h8+U/JkycPgwYNYvDgwfTr1485c+aQPXt2bty4waFDh1BK0adPHypWrBhvMT1PnTp1WLZsGWPGjGHXrl2kTJkSTdNo2rTpM7OuvwqdTsfkyZPp0aMHy5cvZ926deTJk4eMGTNitVq5du0aZ8+exW6306RJkxiPUChcuDDz58+nb9++bNiwgY0bN5I7d26yZs2Kl5cXoaGhnD17Nur6qVatWpwsSxidRo0asXnzZmrWrEmJEiUwm83s2bOH8PBwihUrxgcffBCr5/vuu+/o0KEDGzZsoEaNGpQsWRKbzcaePXsICwujQIECUUm9EEKINyPJvBBCiCjNmjUjU6ZM7N69myNHjnD+/Hnu37+PXq8nbdq01K9fn3feeSdquPITBoOBuXPnMm3aNNatW8euXbvw9fWlWLFiTJgwgcePH7skmS9SpAgtWrRgwoQJ7Nixg/DwcLJly0azZs1o27btM0utvUipUqVYtWoV8+bNY8uWLRw7dgyLxUKqVKnIkCEDDRs2pHbt2lH7V69enbCwMPbv38+VK1c4cuQInp6epE+fnu7du9OmTZsY3a8fm1q0aEHevHmZOXMmBw8e5MyZM/j6+lKlShXat29PhQoV4jWe56latSrffvstCxcuZPfu3VE9vCVKlHijZB6cvf6LFy9m2bJlrF69mjNnznDs2DH8/PxImzYtLVu2pHr16q/cW12oUCHWrl3LqlWr2LBhA8ePH2fbtm3Y7XaSJ09Ojhw5qF+/PvXr14+VJe9iKlOmTCxZsoRx48axe/duQkJCyJgxI/Xr16dbt26xPulc5syZWbZsGbNmzWL9+vVs3rwZnU5H9uzZqVevHu3bt5eJ7oQQIpZoKqHd3CWEEEK8oQEDBrB8+XJGjBiRIGYGFyK+TZw4kUmTJtG7d2/69Onj6nCEEELEAblnXgghhBBCCCGEcDOSzAshhBBCCCGEEG5GknkhhBBCCCGEEMLNyD3zQgghhBBCCCGEm5GeeSGEEEIIIYQQws1IMi+EEEIIIYQQQrgZSeaFEEIIIYQQQgg3Y3B1AAlRcHCwq0OIMT8/P0JCQlwdhngJKaeET8rIPUg5uQcpJ/cg5eQepJzcg5STe3CncvL393/pPtIz7+Z0OilCdyDllPBJGbkHKSf3IOXkHqSc3IOUk3uQcnIPia2cEterEUIIIYQQQgghkgBJ5oUQQgghhBBCCDcjybwQQgghhBBCCOFmJJkXQgghhBBCCCHcjCTzQgghhBBCCCGEm5FkXgghhBBCCCGEcDOSzAshhBBCCCGEEG5GknkhhBBCCCGEEMLNSDIvhBBCCCGEEEK4GUnmhRBCCCGEEEIINyPJvBBCCCGEEEII4WYMrg5ACCGEEEIkXHaHjZN3DnD54WmuPjzH1YfnuBZyHpvDiofehIfBE5PeC3+vNORPW5ICaUuRN00xvIw+rg5dCCESNUnmhRBCCCHEU5RSnLl3iA0XlrHp4goeRt6L0fP2Xt8AgE7TkStlQWrlak6tXO/ia/KLy3CFECJJkmReCCGEEEIAYHNYWXV6LstOziDo0cWox/08U5IndTGypshNlhSBZPbLhZfBB7M9Eos9EostkhuhlzlxZz8n7+zjdth1zt4/ytn7R5l5YBjVcjShYd4O5E5d2IWvTgghEhdJ5oUQQgghkjilFDuurGH6/m+jkniT3ovyWetSM2dTSgRUwaAzvvQ4jfJ3AeDe45vsuLKGlafncPnhGdacnc+as/Mpk7km75UeQia/HHH6eoQQIimQZF4IIYQQIgk7c+8wP+75muO39wCQwjMV7Yp+Qq3czfE2+r7WMVP7ZOCd/J1pmK8Tx27vZuWpOWy9/Ad7rq3nYNBWmhbsQZsifeW+eiGEeAOSzAshhBBCJEEO5WDhkYn8fHAkDmXHpPeiacEetCjUCx+PZLFyDk3TKJy+HIXTl6N9yHmm7P6KfUGbWHR0In+d/41eZb+lcrb6sXIuIYRIamRpOiGEEEKIJOZhxD0+XPYOMw8Mw6HsVMnekNnNdtC5xIBYS+T/K7NfLobXXsCQmnPIkCwr98NvMWRjVybsHIDFbo6TcwohRGImybwQQgghRBJy9NYuevxek52X/8RD78knFb/ny6o/kcYnY5yfW9M0ymepw8zGW2hZuA8A/zs9m75/NODGoytxfn4hhEhMJJkXQgghhEgi1p5dyKdrmnI//BbZU+ZlcsM11AtsjaZp8RqHh8GTriW/YHit+SQ3peTs/aO8979a7LiyJl7jEEIIdybJvBBCCCFEErDk+E+M3f4RDuWgRs6mzG27k+z++VwaU+nMNZj6zl/kT1uSx5ZHfL2hE0uOT3VpTEII4S4kmRdCCCGESMSUUvx8YBRT934NwLsFezKg8qS4nUleKbBGgM0CyvHCXdP6BvD9W8ujlrWbuncw0/d9i1Iq7uITQohEQGazF0IIIYRIpBzKweTdX/D7qZ8B6FxiIK0KfxCrw+q1R0Hor+xEd/csukfX0UKC0D0KQrOGR+2jND3oPXCkyIwjVS4cqXPjSJUbR4YiKJ/UGHRGepX5ltTe6Zmxfxi/HptESOR9PqowBr1OmqtCCBEdqR2FEEIIIRIhpRQTdg3gj9O/oKHRp9wIGubr+OYHdtjQX96O/tJWDFd2onv48onrNGUHWwT6e2fR3zsLZ/6OEQ1HQHFsuWpiy1WLloX74OeZih92fMracwsJMT/gq6o/4WHwfPO4hRAikZFkXgghhBAiEZp3+PuoRH5AlUnUyNn0jY6nhd3BcOw3jMeWoAu7FfW40vQ4MhTGnrEYjhRZUMkDcCQPQPmkcQ6xd9jQHDawhqMLvozu3jl098+hu3vGmdwHHUAfdADTllHY0xemfsnOJK82g2+3vMeuq+v4ZlNXvqnxMwad8U3/JEIIkahIMi+EEEIIkcj8cXoucw6NAaB3ueFvlMjr7pzCY89P6M+vd/awA8rLH1tgHWxZK2DPXAZML16b/snd73b/bNhzVI16XHt0A8P5DRjO/4Uu6AD6W0fx+qMvtVJkJXmeHgw4P40919YzcktvBlaZgl6nf+3XIYQQiY0k80IIIYQQiciOK2uZsKs/AG2KfMQ7+Tq91nG0kCA8dozHeHpl1GP2jMWxFmmJLXcdMHi8cawqeUasxdthLd4O7fE9jEcWYTw0D93DK5TbM5cRvqnpZ7zJ5ku/42nw5uOK36HTZP5mIYQASeaFEEIIIRKN47f3MmxzTxzKQb3ANnQs3u/VDxLxEI89UzEeWYBmtwJgzfMW1tLdcaTJE8sR/0P5pMZSvjeWkp0wHl+Ccf9syofdYojRky99HrP23EK8jb68V2ZIrE7gJ4QQ7kqSeSGEEEKIROBOWBBfb+iIxR5JuSx16Ft+1Csnvfpzf2Ha8A268PsA2LKUxVLpUxzpCsRFyNHz8MFavAPWIq0wHphDtd1T+OKxYqhPOMtOTieZ0Zd2JfrHXzxCCJFASTIvhBBCCOHmLHYzQzZ2JSTyAblSFeKLqj++2pJuEcGYNg7DeGYVAI6UOTFXHYA9awVwVS+43gNr6W7Y8r5FnU3DCb+2mu+8I5hz5AcyGZJTrch7rolLCCESCEnmhRBCCCHc3OTdX3L63iGSeaTg6+oz8DR4x/i5+vMbMK3/Gl34fZSmw1qyC5ZyvcBgisOIY04lDyDyncnUv7CRmxt7sUAfzJj935AxMoI8ZT52dXhCCOEyMoOIEEIIIYQbW3N2AavOzEVD4/OqP5IhWdYYPU/ZbXhsGY3X/3qjC7+PPVVOIlotwlLp4wSTyP+bPWd1OrbaQkVDOiwafHlsDMGrPgBrhKtDE0IIl5BkXgghhBDCTZ25d5gJuwYC0KF4P0plqhaj52mP72Kf/S4eB34GwFKiIxFtluJIXyjOYo0NOt+09G+xjVymdATrFANuLMGxsDla2B1XhyaEEPFOknkhhBBCCDcUZg5hyMauWO1mymWuTesiH8boebqgg3jNa4q6vAtl9Cai/jgsVfonyN746HiZkjPkndWk9PDngt7BNxGHMS1sgXb/vKtDE0KIeCXJvBBCCCGEG5q4+3Nuh10nQ7Ks9K88MUbrrxtOrsDrtw7oHt+FNLkJb/Mb9sA68RBt7ErrG8CQOgvw0JnYYbTyi+US3ovaoLu+z9WhCSFEvJFkXgghhBDCzWy6uIINF5ai03QMrDIZX5Pfi5+gFMY9U/FcOxDNYcMaWBdDj7WolDniJ+A4kDdNMT4oPxKA6V6R7LPfx2tpF/Rn17o4MiGEiB+SzAshhBBCuJG7j28wfqdznfXWRT4kf9qSL36Cw4Zp/WBMO8YDYCnVFfPb36GZfOI61DhXN7AV9QJbo4BByazcdZjx/ONjDCdWuDo0IYSIc5LMCyGEEEK4CYdyMHrrB4RZQsiTuihti75kaTZrOJ7/64Px2GIUGubqX2Kp9AnEYEi+u+hddhg5UxbkoTLzeRpP7Dgwrfscw8n/uTo0IYSIU4mnJhfCDSilePxYceu2IjhYER6usNuVq8MSQgjhJpadmM6hm9vxNHgxsMpkDDrj83e2PMZrWXcMFzej9CYiG4zHWrRN/AUbT0wGL76uPgMfj+Qct9xmfKbMaChM6wZiOL3K1eEJIUScMbg6ACESI4dDceUqHDsOx44pbt4K4fYdBw8egNn87P4eHoqAjJA9O2TLqpE9GxTID2nTavEeuxBCiITpSvAZZh4YDkDP0t+QyS/n83c2h+K1rBv6m0dQpmRENP4JR8Zi8RRp/MuYPBv9Kk3g6w0d+S3sGMVy1qL6hf2Y1vRH6fTYA+u6OkQhhIh1kswLEUvMZsX2nbB+veLwUQgN/fdW21P7Go1gtf7zu8UCly47/8E/PfU5cyjKloFyZTUKFgCDQZJ7IYRIihzKwXc7PsFqN1Mmc03eztPu+TtHPHQm8rePo0x+RDSbiSNdgfgL1kUqZK3LuwV78tvxqYwM20++vHXIcHodnqs+JVJvwp6zmqtDFEKIWCXJvBBvQCnF0WOw9k/Fpk0Q9vifbSaTs3e9UEEoWtQXT9NjUqWClP7g6anhcCgsFoiMhMeP4eo1ZzJ/+bLiwkU4ew4uXHT+m79Q4Zcc6tVVNGygkSWzJPVCCJGUrDw1m5N39uNt9KVv+dFo2nM+ByKC8VrSBf3dUygvfyKazcKRJm/8ButCnUoM5OCN7Vx4cJyhWhA/5K2P6fQfeK76mIh3Z+PIUMTVIQohRKyRZF6I16CUYu8+mPmz4uSpfx5Plw7q1IJKFTVy5/qnJ93f30RwcPhTx9DpNDw9wdMTUqSAgAAoVxbA+ZyQEMXe/bB7t2LPXngYAosWw6LFiuLFFO800KhSWXrrhRAisbsTFhQ1vL5Lic9J45Mx+h0jQ/Ba0hn93dM4vFMT2WwmjtSB8Rip63noTXxR9Ufe+702B29uY0HJKrSLrITh8ja8VrxHeMuFKP+srg5TCCFihSTzQrwCpRT7D8Cs2Ypjx52PmUxQoxrUraNRtIgzSY8Nfn4atWpArRoadrti9x74/X+K3Xvh4CE4eEiRKRN07gA1qoNeL0m9EEIkNkopJuwaQLg1jPxpS9IgX8fod/x7srsniXxE8zluvYb8m8iSIjfvlfmGcTv7MfPgKIrWXUrh8Pvo75zEa1l3wlstBO+Urg5TCCHemMxmL0QM3bip+KSf4qNPnYm8hwe0eBcWL9D4fICO4sW0WEvk/0uv16hQXmP0SB2LF2p0bA9+yeH6dRgyTNG+k2L9BoXDITPjCyFEYrLl0v/Yfe0vDDojn1T4Dl10S8pZI/H8vRf6W0dRnn5ENp2ZZBP5J97O047yWepic1gZseMTHjb4AUfyAHQhV/Fa8R5Yw19+ECGESOAkmRfiJex2xa+/ORPmvfuck9c1a+JM4vv00pEqVfz2iKdPp9G1s47fFml076qRLBlcuQqDhyp6vK84fVoSeiGESAwemYOZtPsLAFoV/oCs/nme3cluwfOPvhiu7UF5+BDRZDqONElraH10NE3jk4rfkcorHVdDzjHt5I9ENJmO8vRDf+sonqv7gXK4OkwhhHgjkswL8QIXLip69lJMnKyIjISiRWDOLI2+H+hIndq1w9q9vTXat9X4baFG184a3t5w6jR0e08x9nsHjx5JUi+EEO5s5v7hPIy8R5YUuWlV5INnd3DYMa3pj+HSFpTBk4hGP+JIXyj+A02g/DxT8Vnl8QD8fupnDkYGEdHoR5TeiOHCBoy7f3RxhEII8WYkmRciGkopVv6h6NZDceo0+PjAZ59oTPgh4c0k7+ur0bG9xoK5GnVqgVKw4n/Qup1izVqFUpLUCyGEuzlz7zCrz8wDoG/50XjoTU/voBQem0diPLsWpTMS2XAijkylXBBpwlYyoGrUMn5jt/clNHUuzDUGA2DaNQn9+Q0ujE4IId6MTIAnxH+YzYrvxilWr3H+Xr4s9PtUc3lP/MukTqXx1Rca9d9WfD9OcekyDBup2LIN+n0CKVMm7PiFEO7n8WPFzVtw6xbcvAXBwQqlwGR6TESEA53OWTelTw8Z0kP69M5RReLFHMrBxF2fo1DUyNmUwunLPbOPcf9MPA47k31z3RHYs1WM7zDdRo/SX3MgaDO3wq4xbd8QPqowBsudk3gcno/nmn6Et/4VlSqXq8MUQohXJsm8EP8SFKT4YpDi/AXQ6aBbF402rWJvhvr4UKyoxs8zYOGvzln3t++A48cVn30KVSq5z+sQQiQsdrvi4iU4egyOHlUcPQZ37z1v78h//fz06KBMmRQli0PJEhrFi0Hy5FIv/ddf5xdz+u5BvAw+dCv11TPbDSd/x7TtOwDMVfpjy/t2fIfoVryNvnxa6Qc+XdOMVWfmUjHrW5Sq0h/9vbPor+/D6/fehLdeDJ7JXR2qEEK8Ek3JGNxnBAcHuzqEGPP393ereBOyg4cUn3+lCAtzrvv+zSCNEsVjp5HpqnI6f0ExdLjiwgXn73XrwMcfatIzFg25ltyDlFP8stkUBw7Cxs2Kbdvh0aNn9/FLDun+7nlPlRJ0evDy8sRijsRudyb8N286e+5DQ59+rqZBgfzQsL5GjepgMkndFGYOoePSCjyMvEf3UoNoXuj9p7brr+zAc3lPNIcNS4lOWKr0e+1zJbXradLuL1hxciapvTMwo/FmfO12vOc3Qxd6E1v2ykQ2+hGiWy3AxZJaObkrKSf34E7l5O/v/9J9JJmPhrsUMLjXGzIh27RZMWSYwmp1NiyHDtZImzb2GpWuLCeLRfHzHMX8heBwQNYsMPQbjRzZpdH8b3ItuQcpp/hx8pRi5SrF1q0Q8q8E3ssLChWEwoU0CheCPIHg4/NsXfK8cnr0yNmjv/+AYv9BuHz5n23JksFbdeGdBhpZsiTd+mnK7q9YdnI6Wfxy81OjDRj1HlHbdHdP47WoDZo1HGuetzC/NeaNks+kdj1FWB/T8/eaBD26RJ3cLfis0nh0d07itbA1mt2MueLHWEt3c3WYz0hq5eSupJzcgzuVkyTzr8ldChjc6w2ZUC1bofhhvPM+zyqVYdAXWqz3DiWEcjpyVDF4iOLuPfD0hE8/1qhbO+k2mP8rIZSReDkpp7hjtSo2bYbflilOnfrn8RQpoGplqF7NmcAbDC+vN2JaTnfvKtb+Cb//T3Hr9j+P16kNPbrG7peq7uDig1P0/L0mDmVnVJ1fKRFQJWqbFnYHrwUt0IXdwpa5DJGNp4HB4wVHe7mkeD0du7WHj1c3QqGi/saGY0vw/OsrlKYnovkcHAElXB3mU5JiObkjKSf34E7lFJNkPuGNJRIiniilmD7TwffjnIl8o4Yw5OvYT+QTiiKFNWbN0ChVEiIj4dvhilFjHJjN8n2eEElZeLjil3mKps2dI5ROnQKjEerUgnHfaaxYovHpxzqKF9NilMi/ijRpNNq10fh1gcaYURoVyjsfX/cntGrnrKPDw5NGHaWUYvLuL3AoOxWzvv1UIo81HM/f30cXdgtHyhxENhj/xol8UlUofRka5usEwA87PiXC+hhbwaZY8zZAU3Y8V30KEe7R0BdCCEnmRZKklGL8RMWcuc7fu3TS+OQjDb0+cSbyT/in0Bg7SqNLJw1Ng5WroHdfxb17SaOxLIT4R3i4Yt4CxbstFdNmKB4EQ+rU0LWzxtJfNb76QkfJErGfwEdHr9coV0Zj1HAd06dqFCkMZjPMmQst2yg2bEr8ddTOq+s4cmsnRr2JnqW//meDcuC5uh/62ydQXv5ENJoKnn6uCzQR6FLyc9L4BHAr7BqzD44GTcNc82sc/tnQhd3Cc+1AUA5XhymEEC+VpJL5adOmkSdPHvLkycPhw4ddHY5wEaUUk39ULFnm/P3TjzU6ddDQtMSdyD+h1ztf7/djNJInh1OnoGtPxanTib+xLIRwDqf/9TdF89aKqdMUIY8gUyb48nONJYs0OrbXXLqUZb68GpPGawwbqpEpAB4Ew9ffKIaPTLy99DaHlen7hgLQrEAP0ifLErXNY9t3GC5sQOk9iHhnMipFZleFmWh4G335qPxoAJafnM6pOwfBw4fI+uNQehOGS1swHpjt2iCFECIGkkwyf/bsWSZOnIi3t7erQxEupJSzB2rRYufvn32i0ahh0kji/6tUSY3pP2pkywb37kGvPoo//0qcDWUhhLP+27FT0a6TYuJkxcOHkDEjfDFQY95s5xwa8dELHxOaplGlksbc2Rod2jmXCl29Fjp1VZw8lfjqqZWn53D90QVSeKamZeE+UY8bji3BY/8sAMx1huPIWMxVISY6pTPXoGbOZjiUg+92fIzVbsGRJg/map8D4LHte3Q3j7o4SiGEeLEkkcxbrVYGDBhAvnz5qFmzpqvDES708xyYO9/580cfarzTIGE0XF0lIEDjp8nO+1QtVhgyTPHTdAcOR+JrLAuRlF26rPikn6L/54rr1yGlP/T7VGPBLxr16iScJP6/jEaNbl10TBynkS4dBN2A93op5i9UJJb5e0PND/nlkHPN+A7FP8PHIxkAuhuHMW0cAoC5XG9ZSz4OvFfmG/w8U3I5+DSLjk4EwFboXax56jnvn1/TD6zhLo5SCCGeL0kk81OnTuXcuXMMHz4cvV7v6nCEi8xfqJg129n469NLo2njhNl4jW8+PhojvtVo18b5+9z5zqTeYkkcDWUhkjKzWTF1moOOXRR79zkntmvTChbO02hYP+Em8f9VpLDG7BnOtejtDvjxJ8Xo7xQ2m/vXUwuOjCPUHEzWFIG8FeisiLWwO3iu/ADNbsWWqybWsu+5OMrEyc8zFb3KDANgwZHxXH14znn/fI2vcfimR/fwCqYto10cpRBCPF+iT+ZPnDjB1KlT6d27N7ly5XJ1OMJF/vxL8eNPzkZfj24aLd51jwZsfNHpNHp00/F5fw29HtZvgI8/Uzx65P4NZSGSqn37Fe07KeYtALsdKlWAebM13uuhi3Zt+IQuWTKNwV9pfPShhk4HK/+A/p8rt76P/sajK6w46RxG36PU1+h1BrBb8PyjL7rHd7Gnyklk3ZFvtJa8eLFqORpROlN1rA4LE3YNcI748PTDXHcEAMajv6K/sMnFUQohRPQS9aeDxWKhf//+5M2bl65du7o6HOEiBw8pho9yNvZatYB2bdyvERtf3qrnnO3exwcOH4GevRRBN9y3oSxEUhQSovh2hIOPPlUE3YA0qWHkMI0Rw3QEBLh3/adpzlFVw4dqmEywZy/0+sB9V+SYsf9brA4LJTJWoVSm6gCYNg1Hf+MQypSMyIaTwMPHxVEmbpqm0afcCDz0nhy+uYP1F5YAYM9SFkuJjgCY/vwS7fE9F0YphBDR01RiueksGmPGjGHOnDksW7aMwMBAAAYMGMDy5cv59ddfKVq0aLTPczgc6HSJ+nuOJOP8eRttOz4iNFRRp7YHY0f5otO5d2M2Ppw9Z+O93qHcuuUgVUqNn6YkJ18+g6vDEkK8xOYtFgZ9E8b9+wpNg9YtPfmgtxe+vonvM+3YcRu9+jzi/gNF+vQ6Zs9MTuZM7nMr3bEbe+i4sDI6TceCdvvInaYgjv3zsP/+KWga+rZz0QXKPD/xZdae0Uze/hX+XmlY2ukofl4pUdZIbD/Vg9un0PLUQt/mlySz8o0Qwj0k2tb5oUOHmDVrFr17945K5GMqJCQkjqKKff7+/gQHB7s6jATp3n1Fj/cVoaFQqCD0+8RKSMhDl8TibuWUJjVMnaT4tD+cv6Do0CWEUcM1ihZJvI0YdyujpErKKXqPHysmTFasWu38PVtWGNBPo2ABC1arhfj+k8VHOWUKgB8nwyf94No1B526PGTSBI10aRN+PaWU4vtN/QGolas5qQ0BhJzYiNfKgWiAufwHWNOUIK4LTq6nf9TP2YE/js/lysOzjF3/GR9XHAuArvZIvBY0gzN/EbZ1GrbCzeM9Nikn9yDl5B7cqZz8/f1fuk/i+6oesNlsDBgwgDx58tC9e3dXhyNcIDJS0X+g4vZt5/rJI4dpmEwJv4GXkKROrTFxnEaRwvD4sfMe+u07Eu1AHiHc1sFDivadnYm8pkHL5jBzmkbBAom/zsuYwVlPZQqAm7fgw48U9+4n/Hpq3/WNHL21C6PeRIdin/094d2HaA4rtly1sJbu4eoQkxyj3oMPy48CYPXZeZy4vQ8AR5pALBX6AmDaOhrt0Q1XhSiEEM9IlMl8eHg4ly9f5tSpUxQsWJA8efJE/Vu+fDkALVq0IE+ePKxfv97F0YrYppRi9FjFmbOQwg++G6Xh55f4G7VxIVkyje/H/L10nQW++Eqxek3CbygLkRTYbIppMxx8+LHzi8uMGWHSeI3e7+uS1JeXqVNpjP9BI0N6uB4EfT9WBAcn3HrKoRzMPDAcgEb5OpHWK81/Jrwb4fxWRsS7wunLUSd3SwB+2PkZNocVAGvxDtgzFkOzPMb011eQeO9QFUK4mUQ5zN7Dw4NmzZpFu23//v1cvnyZ6tWrkzJlSgICAuI5OhHXflsCf64HvQ6GDNbcfsInVzOZNIYNgVFjFGvWwfBRipBH0KqF/F2FcJVbtxXfDFUcO+78vf5b8EFvDW/vpHldpkurMf4H6P2B4vIV6PuJYuI4SJ484f09Nl1czoUHJ/A2JqNl4Q9kwrsEpnupr9h19U8uB59m6YlptCjUC3R6ImsPw3tuYwxXdmI4vgRboXddHaoQQiTOZN7T05Nhw4ZFu23AgAFcvnyZHj16PHcCPOG+Dh5STP7R+Y15714axYslvIacOzIYNAb2Bz8/xaLFMPlHRUiIokc3TSYDEiKebdmmGDFKERYG3t7Q7xONmjXkOsyYQWPc99DnQ8WFi/Dl14rvxzjrr4TCarfw8wHnUO6WhfuQ6ux6jEd/RaER+dZYlH821wYo8PNMRfdSXzF2+0fMPTSWqtkbks43MypldiwVPsS0dTSmLaOwZ62ASp7R1eEKIZK4RDnMXiRNt24rBg1W2B1QpzY0a+LqiBIXnU6j13saPbs7G8bzFsDosQq7XYYbChEfzGbFd+McfPGVM5HPlw9+niGJ/L9lyazx3RgNLy84eAi+H69ISIv2/HHmF26FXSWVVzqapSyFaeO3AFgqfIg9e2UXRyeeqJO7JYXTlyXSFsHEXZ9HvYesxdtjz1D07+H2g2S4vRDC5SSZF4mC2az44ivFwxAIDHT2VEmPcezTNI22rTX6f6qh08HKVTDoG4XZLA0aIeLS5SuK7u8rlq9w/t66JUyZoBGQUeq5/8qVU2PwVxqaBv9b6bz1KiEIt4Yx//APALTL350Uq/s7J7zLXRtraZmsNyHRNI0Py43CoDOy+9pf7LiyxrlBpyeyznCU3oThyg4MxxPIm0sIkWQluWR+5MiRnDlzRobYJzITJ/8z4d3wITJzfVxrUF9j6GANoxG2bIV+AxXh4ZLQCxHblFL8sVrRtYfiwgVIkQK+G63xfk8dRqPUc89TobxzJBHApB8Vu3a7vn5admIaDyPvE5AsO41PbP17wrtcRNYZLhPeJUBZ/fPQvOD7AEze8yXh1jCAqOH2AKatY9DC7rgsRiGESHLJvEh8Nm5WrPifsy309Vca6dNLoyg+VKms8d1o53DWAwfho08Vj0Jd32AWIrGIjFQMG6kYOVoRGQklS8DsmRplSksdFxMt3nVODOhwwNdDFBcvuq5+emQOZvGxHwHo5pED062jKFNymfAugWtd9EPS+2bh7uMbzDk4Jupxa/H22NMVQjOHYtoU/RxNQggRHySZF27txk3F6DHOBlrb1lCqpDRy41PxYhrjv9dIlgxOnIQ+fRX33WCNZyESuqvXFD3eV6xdBzod9OjmXCYydSqp42JK0zQ++UijaBEID4cvvnbdCKLFx6YQbg0lp1dGal848K8J77K6JB4RM54Gbz4oPxKA5Senc+7+MecGnR5z7SEoTY/h3J/oz8syx0II15BkXrgtm00xeIgi7DEULABdOkkj1xXy59OYPF4jVUq4cAF6faC4dUsSeiFe15atfw+rvwgp/WHcdxrt2mjodFLHvSqjUWPYEI20aeDaNfjuh/ifEC844i4rTs4AoMf9x+jQsFTsiz17pXiNQ7ye0pmqUzlbAxzKwfid/XEoBwCONHmxluwMgGnDUDCHujJMIUQSJcm8cFvTZihOngJfXxj8lZaglh9KanLk0JgyUSNDergeBO9/oLh6VRJ6IV6FzaaYOMXBF4MU4eFQpDDMmiFLbL4pPz+Nr7/S0Otg3V+wZm38nn/hkQlE2iLI7zBRyaJhy10Ha6lu8RuEeCPvlxmCl8GH03cPsvrM/KjHLWXfx5EiC7rHdzBt/96FEQohkipJ5oVb2r1HsWCR8+eB/eU++YQgIEBj8gSNrFngzh1nQn/unCT0QsTEvXuKDz5S/LrY+XurFjD+exlWH1uKFNbo/Pfore/HKy5fiZ+66U5YECtPzwGgZ7gRR6pAIusMkwnv3Exqnwx0LNEfgJn7h/Ew4p5zg9ETc80hzh+PLEIXdNBVIQohkihJ5oXbCQlRjBjlbIg1aQRVKkmjKKFIm1Zj0gSNwEB4+NB5D/3RY5LQC/EiBw8pOnVTHD0G3t4wbIhGr/d0MtoolrVtDSWKQ2QkDBocP0tqzjv8A1aHheJWAyX1KYl8Rya8c1eN8nUmZ8oChFoeMn3/t1GP27OUwVqgCQCefw0Cu8VVIQohkiBJ5oVbUUox9gfF/QeQLStRSw+JhMM/hcaE7zWKFIawx/DxZ4q9+yShF+K/HA7F3PmKvp8ogoMhZw6YOU2jSmWp1+KCXq8x6AsNf3+4eAkmTIrbeino0SXWnl0AQPdIL8xvfYdKkSVOzynijl5n4MPyowBYd24Rx27tidpmrvwZDu9U6B5cwHhgjqtCFEIkQZLMC7fy1wbYtBn0evjyc1lPPqHy9XUuW1emtLMXrP/nii1bJaEX4olHoYqBXyp+mq5wOKBuHfhpikbmTFKnxaVUqZwJvabB7ythz964q5fm7fwCBw7KWQ3kK9dPJrxLBPKnLUm9wDYAjN/VH5vD6tzglQJL5X4AeOyeghYS5KoQhRBJjCTzwm3cuaP4fpyz4dWpg0bePNLoTcg8PTVGDtOoVhWsVvhqsGLNWknohTh7TtGlu2LHTjAa4bNPNL4YoOHpKXVafChVUqOpc1Q0o8YowsJiv166fmMPG4I2AtAlbQ2spbrG+jmEa3Qt+QXJTSm5HHya5SdmRD1uy9cAe6ZSaLZITJuHuzBCIURSIsm8cAsOh2L4KEVYGOTL57z3USR8RqPG4K806r8FDgcMG6n4bakk9CLp+mOVouf7ips3IUN6+HGSxjsNNDSZEC1e9eiqEZAR7tyFyVNjuU6yWZj/VzccGlTS/Mn29hSZ8C4R8fNMSbdSXwIw59AY7oT93QuvaUTWGITSGTBc2Ij+wkYXRimESCokmRduYfkK2H8ATCb4aqAsQ+dO9HqN/p9ptHjX+fv4iYrZv8T/Ws9CuJLZrBgx2sHIMQqLFcqXdd4fLyOMXMPLS2Ngf+fffuUfxN68HkpxY93HrLfdAaBttYky4V0iVCd3SwqkLUWkLZwf9w6KelylyoW1REcATJuGgTXCRREKIZIKSeZFghd0Q/HjNGdD6/0eGlmySOPX3WiaRu/3Nbr8vTTUjFmKyT9KQi+ShqAgRc9eilWrQaeD7l01Rg7XSJ5c6jJXKlpEo9mT4fZjFY8fv3l9ZDj6K79c+x2lQaU0ZciZreYbH1MkPDpNx4flR6HT9Gy7vIq91zZEbbOUfQ9HsgzoHt3AY89PLoxSCJEUSDIvEjSlFKPHKiIjoVhRaNzI1RGJ16VpGp06aHzQ25nALFoMo8cq7HZJ6EXitW278/74c+chRQr4foxG+7YaOp0k8glBj24aGTPC7dtvPtxeF3SQ61uGsMHonBStXYURsRGiSKBypMxPk/zOuRAm7v4cs+3vXnijN+Zqnzt/3D8L7cFFV4UohEgCJJkXCdofq+DAQefw+v6fSgM4MWjezDm8VaeDlavgm28VVqsk9CJxsdkUP/7kYOCXirDHUKggzJqmUbKE1GEJiZeXxoDPnGXyv5Vw6PDr1UVa6G08V37ILI9QlAaVszUgR8r8sRmqSIDaF/+M1N4ZuBl6hUVHJ0Y9bs9ZA1v2KmgOK6YNQ0BGoQkh4ogk8yLBuntXMelH5wdg184amWTJpkTj7XoaQ77WMBhg4yYY+KUiMlIaOyJxePBA8dGnivkLnb83bwYTx2mkTSt1WEJUvJhGo4bOn78fp7DZXrEuslnwXPkBFyJvsdHDioZG+2KfxH6gIsHxNvryfpkhACw6OonrIX/3wmsa5upfovQmDNf2YDi9yoVRCiESM0nmRYKklOK7cYrHj52z1zdv5uqIRGyrWkVj1HANkwl274G+nygePpSEXri3I0cVnbopDh0GLy/45muND3rrZNLOBK57V40UfnDpMixe8gpPVArTxiHobx1luo8dgKrZ3yGbf944iVMkPJWy1adkQDWsDgsTdw2MmgtG+WXCUrYnAB5bRoE51JVhCiESKUnmRYK0YSNs3wEGAwzsp6HXS0M4MSpTWuOHsRrJksHxE9CztyLohiT0wv04HIoFixQf9FXcvw/Zs8GMqRo1qknd5Q6SJ9d4r6ezrH6erbhzJ2b1kOHoIozHl3Ja72CrPhwNjbbFPo7LUEUCo2kafcoNx6g3ceDGFrZc+l/UNmuJzjj8s6ELv4fHjgkujFIIkVhJMi8SnJAQxbgJzoZUh3YaObJLYzgxK1xI48dJGunTwfXr0LOX4tRpSeiF+wgOVnzaXzFlqsLugNo1YdqPGlmzSt3lTurVcc5tEBEJE6e8vA7SBR3AtGk4ANMyZgCges4mZE0RGKdxioQnIHl2WhXuA8CPewbx2PJ3L7zBA3P1rwAwHlmA7vYJV4UohEikJJkXCc6UnxQPQyBHdmjb2tXRiPiQLavG1CkagbkhOBj69FXs3CUJvUj49u1XdOyi2LvPOVFnv081vvpCw8tLEnl3o9NpfNzXOTnnps0vXnteC72J58q+aA4bx3KUZmfoaXSajnZFpVc+qWpZqDcBybNzP+I2vxwaG/W4PWt5rHneQlOOvyfDc7gwSiFEYiPJvEhQjhx1rsUM8NknGkajNIiTitSpNCaN1yhdCiIjYcAXit9XSkIvEiabTfHTDAcff6a4/8A5rH76VI2G9TU0Teotd5U7l0bTxs6fvx+vsFiiqYOsEXj+3htd+D3sqfMw3csMQI2cTcnklzMeoxUJiYfBkz7lnMsRLj85gwv3/+mFt1Tpj/LwQX/rKIZjrzIpgxBCvJgk8yLBsFoVY753Npwa1IdCBaVBnNR4e2uMHqHxVj1wOGDMd4rpMx1REwoJkRDcuqXo/aFi7jznilPvNHAm8nJLUOLQpZNGqpTO235+/e0/G5XC9OcX6O+cRHn5c6hST/YGbUan6WkrvfJJXsmAqlTO1gCHsjN+V38cf/fCK9+0WMp/AIBp+/cQEezKMIUQiYgk8yLBWLQYLl+GFCngve7SKE6qDAaNgf00OnVw/j5nLgwbKWvRi4Rh8xZFx66K4yfA1weGDNb47BMdnp5SZyUWvr7/TIY3d74iOPifuse49yeMZ9agdAYiGoxn9tk5ANTK9S4BybO7JF6RsLxfZgheBh9O3tnPunOLoh63Fm2NPVVutMgQTDtlMjwhROyQZF4kCEE3FD/PcTaYer+vkTy5NIyTMk3T6NJJx4DPNPQ6WLsOPhugeBQqCb1wjchIxdgfHHz5tSIsDPLng1kzNKpXlboqMapdE/IEQng4zJztrHf059dj2jEeAHP1rzhmhP1Bm9BrBtoU+ciV4YoEJLVPBjoU7wfAtH1DCYm879ygM2Cu/iUAhiO/ymR4QohYIcm8cDmlFD+MV1gsULwY1Knl6ohEQlH/bY2RIzS8PGH/AejxvuLqNUnoRfw6fsLZG7/id+fvbVvDlIkaGTNIIp9Y6XQavd93lu/KlXDz6Bk81/QHwFK0DbbCzZlzaAwAtXO3IGPyrC6LVSQ8jfN3IYd/fkLNwczYPyzqcUfm0ljzvI2GwrTxW5kMTwjxxiSZFy63ZSvs3gNGI3z6kUweJZ5WrozGlIkaadPCtWvQ/T3Fvv2S0Iu4Z7Eopk5z8H4fxfXrkCY1/DBWo2d3HQaD1FOJXbGiGpUqQHLDA/zX9UKzhmPLUhZL1QEcu7Wbgze2/t0r/6GrQxUJjF5n4IPyIwFYc3YBJ27vi9pmqfwZyuiN/uZhDKf+97xDCCFEjEgyL1wqMlIxYbIzMWvTCrJkkQayeFbu3BozpmoUKghhYfBpP8WSZUomxhNx5tx5Rbf3FPMWOCdjrFMbfvlZo1RJqaOSkve6Wxlb6iNS64OI8MxM5Ns/gM4Q1StfL7A16ZNlcXGUIiEqmK409QKd6+uO39kfu8MGgEqWDkvZ9wDw2PodmENdFqMQwv1JMi9cau58xZ07kD4dtG0tjWTxfClTaoz/XqNeHbA7YNwExfCRCrNZEnoRe2w2xS/zFN16Ki5ccE7IOWyoxlef60iWTOqoJEUpcp8dTolU+wmz+jDw+CTsHn4cvrmDwzd3YNAZaVXkA1dHKRKwriW/IJnJn4vBJ1l+cmbU49bi7XH4Z0MXfg+PXZNdGKEQwt1JMi9c5vp1xYK/J3rt01uT2aDFS3l4aHw+QKPXexo6HaxZB+/1Vty4KQm9eHNXryre76OYNkNhs0HlSjD3Z40qlaRuSoqMRxZgPLYYhcY3J8aw+WQu1qxT/PJ3r/xbgW1I55vJxVGKhMzPMxXdS30FwJyDo7n3+KZzg94Dc7UvADAemofu3jlXhSiEcHOSzAuXmTBJYbVC6VJQuaKroxHuQtM0WrXQ+GGsRgo/OHsOunRX7NkrCb14PTabYtFiRaduipOnnEvOffm5xrAhGv7+ksgnRfqru/DYNAIAS6WPyf1WVQCm/W8bR2/txqjzkF55ESN1crckf9qSRNgeM2XPoKjH7dkqYstZA03Z8dg0DOS2MSHEa5BkXrjEjp2KnbvBYIC+fWTSO/HqShTXmDldI18+CA2FT/srZv7swG6XBpGIuXPnFD3eV0yaojCboVRJ573xdWtLvZRUaffP47nyQzRlx5qvAdaSXWjaGNKkUYRlGwvA23nbkcYno4sjFe5Ap+n4sNwodJqerZdXsu/6pqht5qoDUHoThmt7MJxd68IohRDuSpJ5Ee/MZsX4Sc6Eq/m7MumdeH3p0mpMHq/RsIGzU+PnOfDhx4q7dyWhFy8WGamY8pODrj0UZ86Cry/0+1Tj+zEaadNKnZRUaY/v4rW8B5o5FHvG4phrDQVNw2TSqN5yK7q0+8DuyTu5e7s6VOFGcqYqQOP8XQHnZHgR1scAKL9MWEp3A8Bjy2iwhrssRiGEe5JkXsS7RYvhxg1InRo6tpNGs3gzHh4a/T7RMegLDS8vOHwEOnZR7NwlCb2I3s5divadFQsWOidTrFYV5s/RaFhfeuOTNGsEnit6oXt0A0eKLES8MwkMJgCUUpwxOnvlbWfasWlNeldGKtxQx+L9SOsTwK2wq/xyaGzU49aSXXAkD0AXdguPPdNcGKEQwh1JMi/i1d27irnznUnW+z01vL2l4SxiR+1aGrOmawTmhpBH0G+gYsIkh8x2L6LcuKkY8IWDfgMVN25A2jQwcrjG0ME6UqWSuihJc9jxXP0Z+tvHUJ4piGj8E3j5R23ed30jp+8dwKB5YjveiwWLFI9CpW4RMedl9OHD8qMAWHriJ87dO+rcYPTEXHWg88cDs9CCL7soQiGEO5JkXsSrn2YoIiOhYAGoVcPV0YjEJnMmjamTNZo1df6+eIlzcrzTp6XRnZSZzYrZvyjadlBs3wF6PbRuBfPmaFQsL0m8AI+tozFc2IDSexDxzmSUf7aobUopfj7oTMLeydeR7OnTEhYGC3+VekW8mjKZa1IteyMcysF3Oz6JWnvenrM6tmyV0OxWTJuGy2R4QogYk2RexJuTpxRr1zl//lAmvRNxxMNDo28fHWNGaqRKCZevQI/3FbNmK2w2aSAlJUop/tqgaN1eMWOWwmKB4sVgziyN93voZGSQAJxLg3kc/AUAc90ROAKKP7V9+5XVnLt/FC+DD62K9KZbF+f7ZskSCA6WOkW8mvfLDiWZRwrO3z/G0hN/D6vXNMzVBqJ0RgyXt6G/uNmlMQoh3Ick8yJeKKWY8Pekd3XrQL680ogWcatcWY1fftaoVtV5X/Ss2c5Zy8+dk8Z3UnD8hKJnL8U3QxW3b0PatDD4K43x32tkyyr1j3DSX9iIx2bnEnTmih9jy/PWU9vtDjtzDo4GoEmB7qTwSk2lipAvL0REEnXbmBAx5e+Vhh6lvwZgzsEx3Hh0BQDlnx1riY4AmDYPB5vZVSEKIdyIJPMiXqzfCMdPgKcn9OwmDWkRP/z8NIZ8rfH1Vxq+vnDmLHTt4ZzFPDJSGuGJ0dWriq8GO+jZS3HiJHh5QtfOGgt+0ahZQ0YEiX/obp/Ac9WnaMqBtdC7WEt1fWafzZdWcPnhGXw9/Hi3YE8ANE2L6p1f8Tvcuyd1iXg1dXK3pFiGipjtEYzb+Rnq72H1ljI9cPimQxdyHeP+mS6OUgjhDiSZF3EuMlLx40/OD6q2rTVSp5bGtIg/mqZRq4bGvDkaVas4e+kXLIT2nRX79ksjPLG4c0cxaqyDdh0VmzaDpsFbdWHhPI2O7TU8PaXeEf/QHgXhuaInmi0CW9aKmKt/5XzT/IvNYY2adbx5offxNflFbStVEgoVBIsVFiySekS8Gk3T6FthDCa9FwdvbGXN2QXODR4+WCp/5vxxzzS0kCAXRimEcAeSzIs4t/BXuHMH0qeDVi1cHY1IqlKn0vj2Gx0jh2mkTeNcHvGjT529uLduSWPcXd27r5g42UHLtoqVfzi/rKlQHmbP1Ph8gE6+PBTPigzBc3lPdI/vYU8dSGT9H0BvfGa3P88tJujRJVJ4popaI/wJTdPo1OHv3vn/wYMHUoeIVxOQPDudSvQHYOrewdx9fAMAW563sGcqhWY3Y9oyypUhCiHcgCTzIk7du6eYv9DZyHmvh4bJJA1r4VoVK2jMna3RrAnodLBpM7Rur5j8Y7gMvXcjd+8qxk100LyV4tffwGKBIoXhx0kao4bryJlD6hoRDWs4XiveQ3//PA6ftEQ2ngom32d2s9jNzD38PQAtC3+Al9HnmX1KlYT8+ZzvvUWLpe4Qr65x/m7kS1OCcGsoP+z4e7i9pmGu9iVK02M4/xf6yztcHaYQIgGTZF7EqRmz/lmKrno1V0cjhJOPj0bfD3TMnKZRtIizMT5lagSt2yvW/amw26VhnlBdvWZn7A8OWrRWLFnqLLuCBeC70RqTxmsUKihJvHgOuwXPlX3R3ziEMiUnssl0VLIM0e666sxc7j4OIrV3Bhrm7RDtPv/unV+2AoIfSr0hXo1ep+fTSj9g1JvYe30Df53/DQBHmkCsRVsDYNo0DGWzuDJMIUQCJsm8iDPnLyhWrXH+3Pt9mXhKJDy5c2lMHKcxZLBGhgw67tyBocMVnboqtu9QUZMSCdc7eUrx5dcO3mrwkBW/O+9VLlwIfhir8eMkjTKlpY4RL6AcmNZ+juHyNpTBk4jGU3GkCYx210hbOAuOjAegTdG+eBg8n3vYsmUgTyBERsLi36S+EK8ua4pA2hf9FIApe77ifvhtACzleuPwToUu+BKO3dNdGaIQIgGTZF7EmSlTFUpBtapQsIA0skXCpGka1atqrFyegh7dnLPeX7wEA75QvNdbsf+AJPWuYrMpNm5W9PrAQff3FJu3gFLOBGrCDxqTJ2iUKilJvHgJpfDYNBzjmVUonYHIBuNxZCz23N1/PzmL4Ii7pPfNQt3crV54aE1zTrAIsGQZPHokdYV4dc0LvUdgqsKEWUIYv7O/8zPHMzmWSp8A4Nj0PVrobRdHKYRIiCSZF3Fiz17F3n1gMMhSdMI9eHlptGujsXihRtvWYDI5l1Ps+4mi+/uKrdsUDoc01OPD/fuKn+comrVUDBqsOHLUWZfUqwMrlvgxdpSO4sUkiRcxY9w9BY/D81FomOuOxJ698nP3fWwJZdGxyQC0L/YJRr3HS49fsQLkygkREfDbUqkjxKvT6wx8Wmk8Bp2RnVfXsv7CEgBs+d/BnqEIWB7jsW2si6MUQiREksyLWGe3K6ZMdTZomjaGgABpcAv3kTyZRs/uOn5d4Jwkz8MDTp2Cz79StO+sWLNWYbFIgz222WyKnbsUXwxy0KS5YubPinv3wN8f2reFxQs0vhioI3dug6tDFW7EeGg+pl2TALBU+wJb3rdfuP/SEz8Rag4mi19uauRsFqNzaJpGh3bOz7nflkBoqNQP4tXlSJmP9sWcw+0n7vqcO2FBoOmilk00nv4D3fV9Lo5SCJHQSDIvYt2atXDhIvj6EtXAEcLdpE7lnCRvySKNdm3AxwcuX4ZhIxVNmit+muHg9h1ptL+py1cUU6c5aNpC0W+gYstWsNuda3gP+lJj6a8a3bvqSJtW6hLxagyn/sC06VsAzOV6Yy3W5oX7h0Q+YMnxnwBoX+xT9Dp9jM9VpTJkywZhj51L1QnxOloU6hU1u/2YbX1xKAeOdAXQlWwHgGnjMHDYXBylECIhkWRexKqICMX0Wc4Ep2N7jeTJpQEu3FvKlBo9uulY+qtGj27ONeofPoS586B5S2dP8s5dCptNEvuYCrqhmDtf0aGLg7YdFPMWwP37kMIPWrwLc2Zp/DhJR+2aGh4eUoeIV6e/tBXTuoEAWIq2wVr2/Zc+57fjPxJuDSVnygJUzt7glc6n02m0bf2kd15hNkt9IF6dXmegf+WJeBq8OHRzG7+fmgWAruYAlKcf+ntnMB751cVRCiESEhmvKGLV4iXORnmGDNCkkaujESL2+Po6e+hbtYAdO2HJMsWhw7BlK2zZqvD3h9o1FXXraOTOJQnovymluHgJtu+A7TsUp07/s81ggNKl4O16GuXLgdEofzvxZnRBB/Fc+SGaw4Y1z9tYqn0OL5lf4UH4HVacnAFAx+L90Wmv3tdRszpMnwm3bztHqDV657XCF0lcJr8cdCs1iIm7BjJ937eUyFgF/+ylMVfoi+eGb/DYOQFbnroo71SuDlUIkQBIMi9iTUiIYsEiZ29Ety7SoyYSJ4NBo0plqFJZ4+JFxR+rFX+uh+Bg+PU3+PU3RZbMyrlPJY08eUiSE7VFRioOH4G9+xTbd8KNG/9s0+mgeDGoWV2jciVkBI+INbqbR/Ba3h3NFoktWyXMdYdDDBLzRUcnEmmLIG+a4pTNXOu1zm0waLRsDuMnKhb8qqj/tvMxIV5Vw7wd2XX1T/YHbWLU1j7MybIdW6F3sR9bjP7OKTy2/4C59reuDlMIkQBoStZcekZwcLCrQ4gxf3//BBPvpCkOFi12zuo7a7qGTieNmCcSUjmJ6L1JGdlsij17Yc06xY6dYLX+sy1tWqhQHkqX1CheDHx8Eud1YbUqzpyFw0dg337F0WNP/x08jFCyBFSsqFGxvPP2hdch15J7cEU56W4dw2tJZzRLGPZMpYhoPBWM3i993q3Qq3RaWhGrw8KoOospEfD82e5fJiJC0ayFIuQRfDNIo0b1hH29y/WUcN17fJOuy6sSZgmha9nPaZn/A3RBB/H+1Tn3Q3irX3FkKOziKMW/yfXkHtypnPz9/V+6j/TMi1hx67Zi2XLnzz26SyIvkhaDQaNCeahQXuPxY8Wu3bBlm2L3brhzB5avgOUrFHod5M+vKFkCChbQyJ8PkiVzz2vlwQNn8n7ipHPpuJOnwGx+ep+0aaFMKShbRqNUSfD2ds/XKhI+3e0TeC3t6kzkA0rEOJEHmH1wNFaHheIZK79RIg/OJS6bNYWZPyvmLVBUr5Y0R+aIN5faJwN9y4/m2809mLl7BPn8S1IkoDzW/O9gPPk7po1DiWj9a4xGngghEi9J5kWsmDVbYbFC0SJQtrSroxHCdXx8NGrWgJo1NMxmxb4DsHevYu9+uH4djh13/gOFpkG2rIoC+SF3Lo2cOSFHDufyeAmF1aq4HuScyf/SZTh3zpnE37n77L7Jk0PhQlCyhEbpkpA5syQyIu7p7pzEa0kXNPMj7BmLE9H4pxgn8ufvH2fDhaUAdC35RazE06QRLFgI587Dvv3OOSGEeB1Vc7zD/qDNrD23kJFbezP1nfWkqPQJhvPr0d8+juH4UmyF3nV1mEIIF5JkXryxS5cVa9c5f+7ZXZPGuxB/M5mcQ8orlndeEzdvOpP7I0cUx09A0A1ngnzpMsA/dzylTavInAkCAiBjBo2AjJAuHaRKBSn9Y3eSOItF8SAYHjyAu/fg5k1nnDduOu9zvx7kXCruvzQNsmSGvHmhcCGNwoUgaxZkVI6IV7q7p51D680h2DMUJaLJNPDwifHzp+//FoWiWo7GBKYuEisx+flpNKivWLwE5i1QlC4l14R4fb3Kfsupe/u5EnyO77d/wuAas7CU641pyyhM277HlqsWeKVwdZhCCBeRZF68sWnTFQ4HVK7kHDoshIhehgwaDetDw/rO6yQ42JnUnzytuHgRLlyAW7edQ/Pv3IEDB+HfSf4TfskVKVKAtw/4eIOPD3h5gdEAer3zn04HDgdYbWCzgc0KEZHw+LFzLezHYfAoFEJDXx63l5dzDe3s2SBnDo08gRCYW4bNC9fS3T2L12+d0CJDsKcvTEST6a+UyB8I2sqBoM0YdEY6FR8Qq7G1aK6xdLni4CE4eUqRP59cK+L1eBl9GP72PDouqMSOq2tYeXoODYu2wXB8Cfr7F/DYORFLja9cHaYQwkUkmRdv5NhxxbYdzsShe1dprAjxKvz9NSpVhEoV/7l2QkMVly5DUJBzPfagG86f792D+w+cveQhj5z/YovRCClTOv9lSA8ZMzi/eMiYwTlUPl1aGS4vEhbdvXN4LumEFvkQe7qCzkTe5Bvj5zuUgxn7nbOBN8jbgYzJs8ZqfOnSatSppVi9FhYsUnz7jVw/4vXlTVeULiW/YOrer5m6dzCF0pchV7Uv8VrSCePRRdgKNcORNp+rwxRCuIAk8+K1KaWYOs3Za1ivLmTLKo0VId5UsmTOIeuFCwE8fU05HIrQULh/Hx6GQHgEhD+Gx+EQHu5M9G02sNsVdruzh95o1NDrneu5e3mCjy/4+jh785Mlg1Qpnf9Lsi7chXb/PJ5LOqGLeIA9bX4ims4Az+SvdIzNF3/n3P2jeBt9aVOkb5zE2bK5xuq1iq3b4MZNRcYMco2J19ekQDcOBG1mX9AmhmzsxuSGazEE1sV4di2mjd8S0WKe8/4nIUSSIsm8eG2798CRo84lpzp3lA8QIeKaTqfh5wd+fi/bU65HkTg5e+Q7owu/jz1NPiKazgTPl14QT7HYzcw6MAKA5oV6kcIrdVyESo4cGqVLKfbug8VLFH37yHUpXp9O09Gv8gTe+70210LO8932j/mq8mAMF7egv3EQw6mV2PI3dHWYQoh4JutZiNficCimTnf2yjdt4hxSKIQQQsQV3a3jeC1uhy78HvY0eYloNvO1Jv76/eQsboVdJaVXWpoW6B77gf5LqxbOz8ZVq+BR6LPzXwjxKvy90jCo+nT0moEtl/7H8mursZTtCYDHtjFgDnNxhEKI+CbJvHgtf613Ttbl4wNtW0siL4QQIu7oru/Ha0nHfya7a/YzePm/8nFCIu8z78gPAHQqMQAvY8wnzHsdJUtAzpzOySf/tzJOTyWSiPxpS9Kj9NcATN07mCOZC+FIkQXd43t47J7i4uiEEPFNknnxyiwWxYxZzh6GNq00/PwkmRdCCBE39Je24bWsG5rlMbZMpYloNuu1l+L65dBYHlsekTNlQWrnahG7gUZD0zRavuv8jFyyTGG1Su+8eHON83elSvaG2JWNIVve53b53gAYD81Fu3/BxdEJIeKTJPPilf3vD7h5yzlx1rtNXR2NEEKIxEp/9k88f++FZovElr0KkY1/eqXl5/7tSvAZVp7+BYD3ygxGr9PHZqjPVbMGpErlXJFiw6Z4OaVI5DRN45OK35PFLzf3wm8y5NIcIrNXQXPYMG0aBkq+NBIiqUiUyfzt27eZPXs2nTt3pmrVqhQsWJAKFSrQp08fjhw54urw3Fp4uGL2L84PiU4dNLy8pFdeCCFE7DOcXIHnqo/QHFasgXWJbDgBjJ6vfbyf9n2DQ9kpn6UuRTNUjMVIX8xo1Gja2PlZufBXhZJES8QCb6Mvg6pPx9PgzaGb2xnnb0TpPTBc3YX+3F+uDk8IEU8SZTI/d+5cRowYwbVr16hQoQKdOnWiRIkSbNiwgZYtW7J69WpXh+i2fv0NHj6ETAFQ/21XRyOEECIxMh6ej+fagWjKgbVAE8xvjQW9x2sfb9/1Tey9vhGDzkj3UoNiMdKYadQQPD2dc83sPxDvpxeJVDb/vAysMgUNjRUXf2NJrmIAmLaMBGu4i6MTQsSHRJnMFy5cmLlz5/LXX38xbNgwPvnkEyZMmMAvv/yCXq9n8ODBWCwWV4fpdh49Uixa7OxR6NpZw2CQXnkhhBCxy7h3OqaN3wJgKdYOc+2h8AZD4u0OGz/tHQzAO/k6k8kvR2yE+UqSJ9d4q67z519/k555EXsqZK1LpxIDARh3Zz37kvuhC72Jx87JLo5MCBEfEmUyX7t2bUqXLv3M4yVLlqRMmTKEhIRw5swZF0Tm3hb+qnj82Dkzb/Vqro5GCCFEoqIceGwdi2n79wBYyvTEUnUgaG/WVPnjzFwuPzxDMpM/bYt+FBuRvpbmzTQ0DXbvgavXJKEXsadV4T5Uz9EEu7Lxhcc9ruvsGA/OQXfnlKtDE0LEsUSZzL+IwWB46n8RM8HBit+WOn/u2klDp5NeeSGEELHEbsG0dgAe+2cCYK70CZYKH4L2Zp81DyPu8fOBkQB0KPYpyUwp3jTS15Ypk0a5ss6fly6TZF7EHueEeN+RN3UxHtnC+MQfQrFiWj8YHHZXhyeEiENJKpm/ceMGO3fuJE2aNAQGBro6HLcyb6EiMhLy5oGKFVwdjRBCiETDHIbn8p4YT61EaXoi6wzHWqprrBx65oERhFlCyJmyAA3ydoiVY76Jd5s6v5xYvRbCwiShF7HHZPDim5qzSe2dgSv2R/TzjcR26wjGo4tcHZoQIg5pKolMq2q1WunUqRP79u1j1KhRNGrU6Ln7OhwOdLok9T3HC92546Bu/WDMZpg6JRmVKrz+JERCCCHEEyr0NrZf2sCt4+Dhjb7lDHS5q8fKsY/f3EfHBZVQKGa23ETRgPKxctw3oZSiYZMQLl60M6CfN+3aeLk6JJHInLt7nC6LqvHY8oiqFiPD7OkwfbADLXl6V4cmhIgDSWKsucPhYMCAAezbt4/mzZu/MJEHCAkJiZ/AYoG/vz/BwcFxeo6Jkx2YzVCoIBTIF0ZwsAyxf1XxUU7izUgZuQcpJ/cQk3LSHlzEa1k3dI9u4PBORWTjn3CkLgCxUL52h51hf/ZCoaiV612yeudLMO+bJu8oxv4Ac+eFU69OBHq96z5T5XpyD69STqkNAXxT42cGrmvFZg8L35vv0nd5P8wNx8dxlEKuJ/fgTuXk7+//0n0Sffezw+Hg888/548//qBhw4Z88803rg7Jrdy6pfjfH86fu3XR0N7w/kUhhBBCF3QQ70WtnYl8iqxEtFyII12BWDv+mrMLOHvvCN7GZC5Ziu5F6tQGX18IuuGcDE+I2FY0QwUGVJmEhsZSk5n5135Hf2Gjq8MSQsSBRJ3MOxwOBg4cyPLly6lfvz4jR46U4fOvaPYvCpsNShSH4sUkkRdCCPFm9Of+wmtJZ7TIEOzpCxPeaiEqReZYO35I5ANmHhgOQMfi/fD3ShNrx44NXl4aDd52/rxEJsITcaRK9oa8X3YoAFO9Ilm1sS+YQ10blBAi1iXazPZJIr9ixQreeustRo8ejV7/+uvUJkXXryvWrHX+3LWzJPJCCCHejOHwAjxXfohmN2PLWZ2Id2eD18uHEb6KWQdGEGoOJpt/Xt7J1ylWjx1bmjTS0Olg3364dFkSehE3GufvSuuCvQAYq7/DutVdXByRECK2Jcpk/snQ+hUrVlC3bl3GjBkjifxr+HmOwu6AsmWgUEFJ5oUQQrwmhx2PzSPw3DgUDYW1cAsiG4wHY+xOAHfs1m5WnZkLwAflRqDXJcypgTJk0Kjw93x8skydiEudSn3Ju1kbATAmeCvrdg1zbUBCiFiVMD/l3tDkyZNZvnw53t7eZMuWjR9//PGZfWrWrEm+fPlcEJ17uHRZ8ed658/SKy+EEOK1mcPwXP0Jhktbnb9W+BBr6R5vvIb8f1nsZn7Y8RkA9QLbUDh9uVg9fmx7t6nGtu2KtX9C926K5Mnks1bEPk3T6F79R9SSCywJPcbYkxPR/LNSO29bV4cmhIgFiTKZDwoKAiA8PJypU6dGu09AQIAk8y8wa7ZCKahUEfLmkQaGEEKIV6eFBOG54j3098+hDJ5E1h2BPbBunJxr4ZHxXA05h79XGrqX+ipOzhGbihWFnDnhwgX4YxW0bunqiERipWkaPRoswzGvNMt0wYzZ+SnojdTO3cLVoQkh3lCiTOZHjhzJyJEjXR2G2zp3XrFps7PTRHrlhRBCvA5d0EE8/9cHXcQDHD5piHxnCo70BePkXJeDT7Pw6EQAepcdRjJTijg5T2zSNI13m8DIMYplyxUt3sWly9SJxE3zTEavapNRf3ZkucnC6G0fEhL5gHcLvefq0IQQbyBR3jMv3szMn53371WvCjlzSMNCCCHEq3Ec/g2vJR3RRTzAnjYfEa0Xx1ki71AOftjxGTaHlXKZa1M5W4M4OU9cqFUTkieHW7dh+05XRyMSO5WzOn2ztKB1pAmAn/Z9w/R9Q1FK5m0Qwl1JMi+ecuq0YvsO0Omgc0dJ5IUQQrwC5cBj+w/Yl/ZBs1ux5apJRIt5qGTp4+yUK0/P4cSdfXgZfOhTbgRaLN+LH5dMJo2G9Z0/L1kqCZWIe9bqn9Nbn4XeEc7JJ389Npmx2z/C7rC5ODIhxOuQZF48ZfpMZ2Oidi3ImtV9GkRCCCFczBqO58q+eOydBoCldPe/Z6z3jrNT3gy9wox93wLQpeTnpPUNiLNzxZXGjTT0Ojh0GM5fkIRexDEvf8w1h9DW7MkX4T7o0LHu3CIGbejIY4usQy+Eu5FkXkQ5dlyxdx/o9dCpvSTyQgghYkYLCcJrUVsM5/9C6Y3om0zAUvEj0OKumeFQDsZs+5AI22MKpitDg7wd4+xccSldWo3KlZ0/S++8iA/2nNWwFmhMA4sHI1QWPPQm9lxbT58/3uJ6yEVXhyeEeAWSzIsos2Y7GxFv1YWAAEnmhRBCvJz+yk685zdFf/cUDq+URDT7GV2x5nF+3mUnpnH01m48Dd70qzQBvU4f5+eMK82aOD9z/1wPDx9KQi/inrnqQBzJMlAlJIRJaRuS2jsDVx+eo/fKeuy7vsnV4QkhYkiSeQHA0WOKffudvfLt2koiL4QQ4iWUwrh/Fp7LuqFFhmBPV5CItktwBJSI81NfDj7NzAMjAHivzBAyJs8a5+eMS4ULQWAgWCywcpWroxFJgikZ5trOW1QKn1rPTyWGUSBtKcIsIXzxVxt+PTZZJsYTwg28djI/adIkbt26FZuxCBf6ec4/vfIZM0gyL4QQ4gWs4ZhWf4pp6xg05cBaoPHfE91liPtT2y2M3NoHq91M6Uw1eCuwTZyfM645l6lzfvYuX6Gw2SSJEnHPnrU81iItAciweSxjqs2iXmBrHMrB9H1D+fzP1jwIv+PiKIUQL/JGyXyNGjXo2bMnGzZswOFwxGZcIh4dOy698kIIIWJGe3gNr4WtMZ5ZjdIZMFf/EnPtYWAwxcv55x/5gfP3j5HM5M8nFb93q9nrX6RGdfD3hzt3Yet2V0cjkgpzpU9xpMiKLvQmyTYN5+PyY/mw/Cg89J7sC9pEtxVV2XX1T1eHKYR4jtdO5vv27UuGDBnYvHkzvXv3pkqVKowbN47r16/HZnwiHkivvBBCiJjQX96B9/x30d87g8M7FRHNfsZatA3EU0J94vY+FhyZAEDf8qNI5Z0uXs4bHzw8/lmmbtly6ZkX8cTDh8i3xqB0Boxn12I8uYIGeTvwY8N15ExZgJDIB3y1vj3jd/YnwvrY1dEKIf7jtZP5nj17sn79embNmkXdunV5+PAhU6dOpXbt2nTp0oV169Zhs8malQndv2ewl155IYQQ0VIK497peC7vjmYOwZ6+MBFtluDIVDLeQgiJfMC3m3vgUHZq5GxKlewN4+3c8eWdBs5l6g4fkWXqRPxxpC+EpfwHAJg2DUMLvkxW/zxMbLCadwv2BGDl6Tl0XlaJbZdXyb30QiQgbzwBXvny5fnhhx/YunUr/fv3J3v27OzYsYO+fftSpUoVxo4dy+XLl2MhVBEXnvTK16sjvfJCCCGiERmC5/96Y9r+/d/3xzchovkvqGTp4y0Eh3IwetsH3H18g0zJc/Jh+VHxdu74lDatRqVKzp+XrZCEScQfa8nO2DKXQbOG47n6M7Bb8NCb6FF6MKPqLCa9bxbuPr7BNxu78MVfbbkZesXVIQshiMXZ7P39/enUqROrVq1iwYIFvP3229y/f5+ZM2dSr149OnTowF9//RVbpxOx4PgJ6ZUXQgjxfLpbx/Ce1xTDhY0ovZHIGl87Z8COp/vjn1hyfCp7rq3HqDfxVbVpeBt94/X88Slqmbq/4FGoJPQinuj0mOuORJn80N8+jsfOSVGbSgRUZkaTzbQu0heDzsje6xvosqwKsw6MJNT80HUxCyFif2m6q1evsmnTJnbv3h31WPr06dmzZw8ffPABzZo14+bNm7F9WvEanqwrX68OBGSUZF4IIcTflMJ4aB5ei9qgexSEwy8zES0XYivSMt7uj3/i5J39zNg/DIBeZYaSM1WBeD1/fCtSGHLmgMhIWL3G1dGIpEQlS09k7SEAGPfNQH/5n5kYPQ3edC4xgGmNNlI0QwUs9kgWHBlH299KM+/wD4Rbw1wVthBJWqwk81arlVWrVtGhQwfq1KnD9OnTsdlsdOrUiTVr1rBp0yYWLlxI5cqVOX78OEOGDImN04o3IL3yQgghomUOxfOPj5z3zjqs2HLVJLzNEhzp4j+JfmQOZugm533yVbO/w9t52sV7DPFN0zSaNHZ+Li9boXA4pHdexB977tpYC7dAQ+G5+jO00Kc74LKkyM2YuksYXH0W2fzz8tjyiNkHR9F2cWkWHJlASOR9F0UuRNKkqTeYxeLChQssXryY33//nZCQEJRSFCtWjJYtW1KvXj08PDyeeU7z5s25ePEi+/fvf6PA41JwcLCrQ4gxf3//14r3488c7N0H9d+CAf1ifYCG+I/XLScRf6SM3IOUU9zS3TmJ58qP0IVcRekMWCp/hrVYu1fujY+NcrI7bAz8szUHb2wlIHl2pjT8Ex+PZG90THcREaFo/K4iLAzGjNQoVzZuvnSX68k9xHs52cx4LWqN/s5J7BmKEtF8DuifbdPbHXa2XPofcw6NIejRRQA89J5Uy9GIRvm7kDtVofiLOQGQ68k9uFM5+fv7v3Qfw+sevFWrVhw+fBilFL6+vrRq1YqWLVsSGBj4wuflypWLY8eOve5pRSyQXnkhhBBPUQrDscWYNg1Hs1twJMtAZP0fcGQo4rKQftz7NQdvbMXT4M2gajOSTCIP4OWl8fZbil8Xw9LlKs6SeSGiZTARWX8c3vObor95GI9t32GpOvCZ3fQ6PdVzNqZK9gZsuLCM5SdncO7+UdadW8S6c4vIn7YkNXI0oXL2Bvh7pXHBCxEi8XvtZP7QoUPkz5+fVq1aUb9+fby8vGL0vHfffZdSpUq97mlFLJB75YUQQkSJfIRpwzcYz6wGwJajKpF1RoBXCpeFtOrMPFacnAnAgMqTEv198tFp3FBj8W+K3Xvg2nVF5kzyeS3ij0qRmci6I/H6vRceB3/BnrEE9sDa0e6r1xmonbs5tXK9y8k7+1l+cgbbLq/i5J39nLyzn8l7vqRI+gpUzfEOpQKqkdY3IJ5fjRCJ12sn80uWLKFgwYKv/LxixYpRrFix1z2teENRvfI66ZUXQoikTnd9H55r+qMLvYnS9FgqfoS1ZCfQXHf71dFbu5iwcwAAHYv3o2K2t1wWiytlyqRRtoxi125YvkLxQW/5zBbxy56zOpaSXfDYPxPPPz8nPE1ulH/25+6vaRoF0pWiQLpS3Au/xeaLK9h88XdO3zvEoZvbOHRzGwCZ/XJRPGMlimWoRIF0paTXXog38NrJ/Osk8sL1nqwrX7eu9MoLIUSSZbfisWsyxr3T0FA4/LIQ+dZolw6rB7gVepVvNnbBrmxUyd6QNkU+cmk8rta0scau3YrVa6BrZ4W3t3xui/hlqdgX/c0j6IP247WiF+GtFoFn8pc+L7V3epoV7Emzgj258egKWy79jx1X13D23mGuhZznWsh5fj/1MwCpvNOTO1UhcqcqTDb/PGRMlo0MybPh6/Hy84hYFPkI3aMgtEdBaJEhaJZwsIajWcPBYQO9CWUwgcGEMnqhfNKikqXDkSwDeKaI95VOhNNrJ/PC/Rw/odiz19kr31565YUQIknSgi/jubof+tvO+WusBZpgrvY5ePi4NK6QyPt8/mcbQiIfkDtVYT6rNA4tiTcOS5eCTAFwPQj+XA+NGro6IpHk6AxE1v8BrwXN0QVfwnP1p0Q2+hF0+hgfImPyrLQq0odWRfoQZg7hyK2dHLyxjcM3t3P14Tnuh9/ifvgtdl/766nnJTelJL1vJlJ4pcHfKw0pPFPj75Uab2MyvIw+eBm88TT6YNAZ0Wl6dJru73/6v/9pUY/Dq9Ulep0ek94LD70JD70Jo96UeOojayS6u6fR3zmB7vZJdHdPoQu5jmYOfe1DKr0JR8ocONLmxZHG+c+eNj+YfGMxcBEdSeaTEOmVF0KIJEwpDMeXYto8As0ajjL5EVlrMPbAuq6OjAjrY774sy1XQ86RxicjQ2rOxtPg7eqwXE6n02jSCCZMVixdpninAYknoRBuQ/mkJvKdSXgtaovh8jY8to3FUqX/ax3L1+RHhaz1qJC1HuC89i88OMG5+0c5f/8Y10IucOPRJR5G3ueR+QGPzA9i86W8Np2mw8fDD1+P5Ph6+OHr4Ucq73Sk8k5Hau8MpPJOR6ClEMm11HgbE1gCa7eiu3UUw5Wd6K/sQHfrOJqyR7urwyslKnlGlHcqlIc3GL1RRm/QGcBuQbNFgs2CZn2MFnYbLfQ2uvB7aHYz+run0N89FXUspelxpC+IPXNZ7FnKYs9YDAym+HrVSYYk80nEqdP/6pVvIw0BIYRIUiKC8fzrawznnT1ftsxlMNcdiUqW3sWBgcVuZvCGzpy+d4jkppSMrLOIND4ZXR1WglGvLkybCZcuw6HDUFymHRIu4Eibn8i6I/D6oy8eB2bjSB2IrUDjNz6ul9GHgulKUzBd6acef2wJ5WboFe48DuJhxD0eRt77+//7RFjDiLA9JsL6mAjbY+wOG3aHHYUDh3LgcNixq79/dzhw4Ij23M9fnVthd9ix2CNROPdxKAeh5mBCzS9f0iyVd3oyJc9B1hSBBKYuQmDqImRNEYheF49plzUcw8UtGM6uRX9lB5rl8VObHd6pcaTLjyNtAezp8uPwz4ZKnhGMr/Elqs2CFnoT3f1z6O+cRnf3NLo7J9GF3nTeonHzCOz9CWXwwp69MrbA2tiyV3H5aLDEQpL5JGLOXGdlVKsWBARIMi+EEEmF/uJmTH99je7xHZTOiKXCB1hLdHqlYbJxxe6wM2prHw7c2IKnwZvhteeRNcWLl7hNapIl06hbW7Hif7BsuaJ4MfkMF65hD6yDpWwvPHZPxrT+axwpsuIIKB4n5/LxSEauVAXJlcp1c3QppbA5rJjtkUTawnlsDiHM8ogwSwiPzME8CL/N/fDb3Au/xb3wm9wKu8qD8DtRtw0cubUz6lgmvRe5UhWkSPryFMtYiQJpS+Jh8IzdgO0W9Bc2Yzi7BsPFzc5e9CevxTMFtqzlsGetgD1LWVSyjLF3j7vBA+WfFbt/Vuy5akY9rD0KQn91D/pru9Ff3Y3u8V0M59ZhOLcOpTdhz14Ja/5G2HNUcfb8i9eiqed/LZVkBQe//Fu3hMLf3/+l8Z47r+jUVaFpMG+2Rtas0hCIbzEpJ+FaUkbuQcrpFUQEY9o8AuOplQA4/LMT+dYYHOnifpm3mJSTQzmYsGsAf5z+BYPOyLBa8ygRUCXOY3NHFy8q2ndW6HWweJFGurSx8zku15N7SFDlpBx4/vERhnN/ojz9CG8xH5Uqp6ujShD8/f25dusy1x9d4FrIBS4+OMnZe0c4d/8Y4dan70c36k0UTFuKsllqUzFrPdL5Zn7t82rBlzAeXYLh5Ap0Ef/cluDwy4wtsC623LVxpMvv0lVKUArdnZMYzq7DcHYdupCr/8TpkwZbgcZYCzZFpcgS56EkqOvpJfz9/V+6jyTz0XCXAoaYvSG/Guxg02aoUQ2++dqFF3IS5k4VR1IlZeQepJxiRn/2T0wbh6ALv4/SdFiLd8BSvg8YveLl/C8rJ4dyMG5HP1afnYeGxhdVp1I1xzvxEpu76tPXwaHD0K4t9OgaO5/lcj25hwRXTtZwvH7rhP7WURzJMhDRciEqWTpXR+Vyzysnh3Jw49Eljt/ey+GbOzh0Yxv3I24/tU9g6iJUzPo2VbO/Q8bkWV9+Mocd/fkNeByeh/76vn8e9kmNLV9DbHnewpE2f8KcYV4pdHdPYzj1xzNfQNiyVsRasiP2LOXjLPYEdz29gCTzr8ldChhe/oa8fEXRrqNCKZgzSyNnjgR4UScB7lRxJFVSRu5ByunFtMf3MG0ciuHcnwDYU+XEXHtYvC8596JysjtsjNnWl/UXlqDTdHxacRy1czeP1/jc0eYtii+/VqTwg6WLNUymN/88l+vJPSTIcooIxntRG3TBl7Cnyk1Ei7ng6efqqFwqpuWklOJqyDn2B21mx5XVHLu1J+refICiGSpQL7A1FbO+hcnwny9gzWEYTyzFeGgeupDrzuNpOuzZKmEt9K77DVn/+9YA4/El6C9vR/v772BPnQdriY7Y8r4Feo9YPWWCvJ6eQ5L51+QuBQwvf0MO+dbBn+uhciUYPlR65V3FnSqOpErKyD1IOT2HUhhOrcS0eThaZAhKZ8BaqiuWMu+BIXYbQjHxvHKyOawM3/w+Wy+vRKfpGVhlMtVyNIr3+NyRzaZo3kpx5y58+blG3dqSzCcVCbWctEdBeC1she7xXewBJYhoMgOMsXwfuBt53XIKjrjLjitr2Xp5JYdubItK7H09/KiRsylNCnQjkz4ZxgOzMR79Fc0SBjjvg7cWaYG1cAtUsgyx+lpcQXt4DeOhuRiPL3WubQ84fNNhLd0Na8FmsTYTfkK9nqIjyfxrcpcChhe/Ia9dV7Rpr3A4YOY0jTyB0ivvKjEZcno77BpXgs9w+eEZrjw8S6j5IWZbBGZ7JGZbJHqdnlTe6Unl5VwKJa1vAPnSlCCzXy5ZqigWuFPlnpRJOT1LC72Faf1gDJe2AGBPm8/ZG582n8tiiq6czLYIvt3ck11X12HQGfmy6k9UzPaWiyJ0T7/MU0ybociXF6ZPffMv6OV6cg8JuZx0d8/gtbgdmjkUW87qRNb/IdZ7Ut1FbJTT7bBrrDv3K+vOLeJ2mLPnXQOqWE20jvSgsN2AI2UOLMU7YMvXIN5unYpXkSEYjy52jj54fAcAh09arKW7Yy305kl9Qr6e/kuS+dfkLgUML35DDh/lYPUaKF8WRo+UXnlXiq6c7oXfYu+1Dey5tp5DN7cRbg17rWOn8ExFwXRlKJS+LBWy1CV9srifPCQxcqfKPSmTcvoXuxXjobl47JrsXDdeb8RSthfWkp1Bb3RpaP8tp+CIu3y1vgOn7x7EqDcxuPpMymSu+YIjiOgEByuaNFdYrTDtR438+d7si1y5ntxDQi8n3bW9eC3rhma3YMtZg8j63yfJhD42y0k9usGxLV+x5MZf7DRaoh4vkDw37cp+Q4mAaom/I8dmwXBiKR57p6MLvQk4k3pLuV7YCjZ57dsJEvr19G+SzL8mdylgeP4b8uZNRcu2CrsdfpqiUSB/Ir/gE7gn5RQS+YB15xax6eIKzt0/+tQ+Rp0Hmfxyki1FHrL65yGVdzo89J6Y9J6YDF5YHZaoZVDuh9/m+qPznL57GIs98qnjFM1QgTq5W1Ip29t4Gl5jvdAkyp0q96RMyslJd30fpg1D0N8/D4A9YzEiaw1Bpcrl4sic/l1Ol4JP8eVf7bgddp1kHin4usZMimao4OII3de3IxysXQd1asNXn7/ZF/VyPbkHdygn/aVteP6vd5JO6GOlnMIf4LFvOsbDC9DsziT+XMb8LEzhxV+3tmJ1OB8rnL4snYoPpFD6Mm8adsJns2A4sQyPvdP+SepT5sBc8SPsOWu88kR57nA9PSHJ/GtylwKG578hx3zn4PeVUKok/DBWeuVdSSnFDfMF5u+dwKZLv2O1mwHQ0MiTuihls9SidKYa5ExZAP0rfstosZs5d+8oR2/t5sCNzRy5uTPqXitvoy+1cjWnVZEPSO2dPtZfV2LjTpV7UpbUy0kLvY3H9u8xnvofAMrLH3OlT7AVaOzaZYf+40k57b2+kW83dSfcGkZA8uwMqzWPTH6yjNWbOHVa0a2nwmiEZYs1/P1f/8v6pH49uQt3KSf95e14/t4rySb0b1RO5lA8DszGeGB21P3i9oASmCv0xZGpJAAPwu+w6NgkVp6eE9WWLBVQjW6lviJHyvyx8hoSNJsF49FFeOz+ES3yIQD2DEUxV+mPI2PRGB/GXa4nkGT+tblLAUP0b8g7dxQt2jiH4U2eoFGksPTKu4JSioM3tjH74ChO3T0Q9XiuVIWon6cdFbLWw98rTaye83bYNf46/xvrzv3KzdArAHjoPWmQtwMtC/eO9fMlJu5UuSdlSbacrBEY98/CY99MNFsECg1b4eaYK/QFrxSuju4Zfin8mLZ1GDMPDMehHBROX5avq8/CzzOlq0NLFLq95+DUKejWRaNDO0nmEzt3KqenEvoc1Zz30MfSxGUJ3WuVkzUC4+EFeOybjhYZAoA9bX4sFT/CnrVCtL3Od8KCmH9kHGvOLsCh7Og0HQ3ydqBD8X4kN708+XN75lA89s/EeGAOms05OtWavxGWSh+jfF7eznWn60mS+dfkLgUM0b8hx01wsGQZFC0Ck8YnnJ6apOTE7X3MOjCCI7d2AuChN1Ele0Ma5u1E3jTF4vw+J6UUh25uZ87BMZy4sxcAT4M3TQp0p3WRD2T4fTTcqXJPypJcOSkHhtOr8dj2HbqwW4BzSL256kAc6Qu5OLjoBUfc5ftdH7Pr8l8A1Mndgr7lx2BMQj10cW3tn4pvhyvSpIbfFmkYDK/3mZLkric35W7lpL+8A8/f30ezW5yz3DeclCC/dIxtr1ROdguG40vx2P0jusd3gb+Hjpf/EHvuWjEaOh706BIz9w9j6+U/AEhm8qdT8f68nacdep3+tV+Hu9DC7uCxYzzGE8sAUB4+WMq+j7VY2xeOCHGn60mS+dfkLgUMz74h799XvNtKYbHAuO80SpaQXvn4FPToEj/uGcTua85GrFHnQYO8HehZ+St0lvhvyCql2B+0mZ8PjuTsvSMAZEyWjY8rjqVohorxHk9C5k6Ve1KWZMpJKfSXt+GxfRz6u6cAcCTPiKXSJ9gC673yPYLx5dCN7YzY8j4PIu7gofekV9lveSuwTeKfqCmeWSzOifAePoRvv9GoWkWS+cTMHctJf22v8x56cygO/+xENJmG8svk6rDiVIzKyWHHcPoPPHZNilon3pE8I5ZyfZyz079GEn745nYm7f6Sy8GnAcidqjCfVPyeXKkKvvKx3JHu5hFMm4ajv+Wci8rhnw1z1c+xZ68U7f7udD1JMv+a3KWA4dk35KQpDhYthoIF4MdJmjSg4onFbmbxsSn/b+++w6OovgaOf2dLegihQ+gl9N6R3kEQsdBRRARRUbGCCgo2QKQIiggqvUuTLoggHSmCdEJNaAFCerLtvn+s5CcvPWyyO5vzeZ48SWZ3Z87umbJnZu69zP57HFZ7KgbNSKtSXehRZSB5gwq6fcehlGLr2dV8u/MjohMvANAmvDv9ag4lyDfEbXF5EnfnSDyYrJAnQ9RefLeMwRjlbJ6jfAKx1HwJa7XnPXYM51RbMjP2fc2Cg9+iUBTPWZbBDb+jWKj7hsfzdj9MdTBjFlStAhPGpe8uvKywPXkDvebJcPU4fktexhB/EUdALlKenIQjn/cWmPfMk1IYT67HZ9t4jNciAHAE5MJa52WsFZ4F06Nd8LE7bPx6dDrT9o4iwRKLUTPRudJr9Kj8Jj4mzzxuuJRyYDq8zHkXW9I1AGwlmpLa6H1U9ltHedLT9iTFfDrpJcFw6woZc0PxbBdFSgp8NVKjbm0p5DPD/otbGL9tEOdjnb1KVyvQkAF1v6BQyP96lfaUHUeiJZ6pf33Gr0enA5DTPy/vN5pItQJ3PnuZlXhKjsS9eXOeDJF/4bNzMqazWwBQRh+sVbpjqfUS+HtuO8h9F7Ywbtu7RMWdBqBNeDc+bP0tKQmpbo7Mu12+oujURWF3wPSfNEoUf/hjvjdvT95Ez3nS4i/jt6QfxqvHUCZ/Ulp/iT28lbvDyhB3zJNSGE9vxmf7BIyXDzkn+YZgqfki1qrdwezaZo/Xk64wYcdg/jyzEoDCIaV4p8FYyuWp4dLleKzUeHx2TMK8byaaw4YymrFW742ldj8w+wP62p6kmE8nvSQYbl0hJ09xMHM2lCkNU76Xq/IZLdmayOTdw1hxdAYAof656V9rOE2KP3nbZ+9pO46Dl3bw9Za3iYyLwKAZeL7qe3St/DoGD+oNO7N5Wo7EnXldnpTCeHYbPju/xxj1l3OSZsRW4SksdV5BBXvuSBRxqTH8sGs4a07MBSBXQH4G1P2Sx4q09r48eaiPhjr4YzN0aA/vvv3w+2/Jkz7oPk+pCfiteAPTWWc/QpaqPbE0fMfrerq/JU839+3bvkm7/VuZA7BWew5L9RfAL1uGxrL5zAombB9MTHI0Bs1Al0qv81zVtzEZzBm6XE+hXT+F78YvMJ3dCoAjWxipTT/EXryJrrYnKebTSS8Jhv/tOOLiFM90USQlwZefaTSoL4V8Rjp+9W+++OMVIuOct0q1K/Mcfap/eNdb1j1xx5FqS2bC9g/SvojXLtScQQ0nEuyb3b2BuYkn5kjczmvyZLNgOr4a894ZGK8cBkAZzdjKP4Wlxouo7IXcHODdWe0WVhybwaz9Y4hNuQ7AE2V68WKNDwn0CQa8KE8ebt9+xYA3FX5+sGShRnCw9463nJV5RZ4cNny2jsdn91QA7PkqkdJuDCpbmJsDc52beTKe2+m8En+zqZTJD2uVblhqvAgBmTeiR1xqDJN2DuW3kwsBKJOrKoMbf0dYtmKZFoNbKYUxYgO+G79IG5/eVqIZfk+O5IYKdHNwD0aK+XTS0w7z5o7jp2mKn6YpSpSAaVPlqnxGsTvszD/4LdP3jsKubOQKyM97Db+5723qnnwgXn18Dt9sH4zVnkq+oEJ80uznLNNpyn95co7E/+g9T1rSNUx/z8P89zwMSVeBf7/oVXwWa43eHn0lXinF5jO/8uNfX3Ah/gwARbKHM/Cx0VTIW+uW5+o9T3qhlOL53opTp2HAqxqdn5Vi3ht5U56Mpzbit3owWmosyjeElBbDsYe3dHdYLhESe4zUtV9ginSOIqSMvlgrd8Fasw8qMJfb4vrj1DLGbXuPBEssfqYAXqvzOa1Kdck6tYI1CZ/t32HeOx3NYQPfYBJ7LtHFiSQp5tNJTzvM0NBQIiOv83RnRUICDP9Eo2njLLJxZrKY5Gg+/+Nl9l903rLTsGg73nzsqwca09PTD8Qnrh1k+O99uBh/Fn9TIEObTqVmwSbuDitTeXqOhJMu8+SwYzyzBfOhxRgjNqI5rM7JgXmwVu2OteKzHt0mXinFzsj1zNo/lqPRewFns6Lnq75Lm/BuGA2m216jyzzp1NLlitFjFGEFYO4sDYPhwb8DSJ70wdvypMVG4bdiIMbLBwHn1dLUph959MnMu1IK4/kdmHdNwXRuu3OS0Yy1YiestfqigvK4OUCnKwlRjNj8GgcuOWNsVuJp3qw3Cn+zPq5Qu4Lh6nF8fv8c07UTJHad79F3wN0kxXw66WmHGRoayjcTrzN5iqJoEZjx88MdyMWDOXR5N8M3vsS1pEv4mwIZUPcLWpTs9MBnNfVwII5PvcHw3/uw7+IWjJqJt+t/TctSnd0dVqbRQ46EjvKkFIZrJzAdXYXp8FIMCZfTHrLnq4S12nPYSrUEo+e2X7Q7bPxxejnzDkzgdIxzeDw/UwCdKr7CsxX63/NLoG7y5AWSkxUdn1EkJD5857eSJ33wyjzZLfjs+A7z7h+dHZX5BGKpPxBr5a6gh/57HDZMx9di/uuntKZSGM1Yyz+FpXY/VHB+98Z3B3aHnQUHv+PnvSNwKDtFs5fm42Y/3tJhc1aQPSSEG7Gx7g7jgUgxn0562mH6+manRevr3IiFIR9otGophbwrKaVYeuRHvt/5CXZlo3D2UnzS9CcKZy/1UPPRy4HYarfw1Z9v8vupxQC8UG0Q3Sq/kSVuxdJLjrI6j87TzQL++FpMx9dguH7qfw/5hWAt+wS2Cs/gyB3uxiDvLzblOutOzGfZkZ+5lHAOAH9TIO3LPs8z5V8mR8D9rzR5dJ680IRvHcxfCHXrwFcjHrwQkjzpgzfnyXD1OL6/DcV48W8A7HnLY6n3Bvai9cETv3skx2A+tATz/jkY4qKAf5tKVXiagKZvcINgNwd4fwcubeezjf24nnwFf1Mg7zQYS6NiT7g7rEyjp+1Jivl00kuCAZYt9+OrMUmEFYDZMzRMJg/c8elUqi2ZMVvfYUPELwA0KvYE79Qfm65bkvS043AoBz/+9TnzD34LQPsyzzOg7pde39O9nnKUlXlcniyJGM/vxHTmT4xntmCIjUx7SBnN2IvUx1a2PbYSzR55HOGMpJTiSPQelh+ZxqYzv2K1O4eVC/HLwVPl+vJE2V4P1Tmmx+XJy0VGKrr0UGgazJ2pUbCg99w1JrJAnhx2zAfm4bNlLJolEQB7/ipY6g3AXriu+4t6pTBc2If573mYTqxBszubSin/UCxVumOt0g38Q3WVp+tJV/j8j5f5+5JzhIFnyvfjpZpD7thsytvoKU8PUsx7f8a8WGqq4qfpyQD07CGFvCtdS7rMx+t7cfTqPgyakb41h/J0+b5Z4gq1QTPwUs0h5ArMz3c7hvDr0enYHDYGPvaV1xf04g6UA1Li0FJi0JJvoFmSwJ6KZksBmwUcVuctkZrB+YVLM6LMAeAThPIJRPkGgjkQ5RsEJn/3fyl7VEnXMV7cjzFqL8aL+zFcPJDWBh7+U8CHt8ZWogn4evZVmisJUWyIWMyGiEWcuXEsbXrJnBVpV/o5mpd8Gj+Ta8dBFq5XsKBGndqKHTthyTLFgFd1vp2JrMVgxFqlO7bw1ph3/4h5/xyMF/fj/8uL2AtUxVqps7NZ0r/jhGcW7VoE5mOrMB1bhSHmTNp0e55yzpjKts/0mFwlR0AeRrVewM97RzLvwAQWHZrMmRvH+ajx93cdmUl4Jrkyfwd6OVuzaLFi3DeKfHlh3mwp5l3l5LV/GLL+OaITLxDsk52Pm02lSv76jzRPPZ0F/K8NEb8wcvMAHMpBm/DuXl3Q6zVHLmFNxnD1OIarJzDERqLFnnf+jruAlnwdTTlcshilGcAnEOUbjPLLjvIP/d+PXwjKPxTSpmVH+Tl/Y/JNm0em5cmWihYXheHqCYxXj2OIPvbv53Putqc6QgphK9oAe7H62AvWAh/P7lDoRvJVtp1by4aIXzhwaTsK59cAH6MfjYs9QfsyvSiTu+ojnbzM0tuTm2zfqXj3fUVQICxZpOHvf//8SZ70IavlSUu4gnn3VMwH5qPZLQAonyBsZR7HWr4jjnwVM6ZdvcOG4dJBjGe3YTrxG8ar/zvBqUx+2Eq3xVq5C468Fe54Ylqvedp8+ldG/fk6KbZkCmYrwactpnt1O3o95UmuzHsxi0Uxe47zC1iPblLIu8rWs2v4ctMrpNiSKBRSkk+bz6BgSHF3h+U2zUo8DWiM3Pwaq4/PBhQDHxvttQV9lqAcGKKPYYzcheHiAYzRR9Fizty3YFc+Qc4i2ycQTL4oo6+zyDYYQSnnFXzlAIcdzZrkvFXSkohmSXD+RjmXkRqPlhoPcRcePGRzgLO49w/FFpwHX1Pg/wp+/1Dwy+48GWDyc8Zm8gWj7+1f9hwWNGsK2FLQbKlgSUBLuo6WcsP5O+kahrgotNhIDInRd43HnrMEjvxVsYdVw16gGiq0yAO/F3e5nBDJ1rOr2XJ2Ff9c3onjP/mulK8uLUo+S4Mij8sVGR2rXRPCCkDUBVi3Hjq0d3dEQqSPCsqDpckHWGv2wfTPL5gPLcYQG4n5wHzMB+bj8M+BvVAt7IXrYC9UG5W9SPru+kqJxXD1OMYrRzCe34Xx/E7nMetmHAYz9qKPYQtvg61EU/ANcuG79BwNi7WnQLZiDF3/PJFxEbz2a1s+ajw5y41qpFdyZf4O9HC2ZsPvio+HK/LmMTB3lsLHR4r5R/XLoR/4fufHKBTVCjRkSJMfHqqN6L3o6SzgnWyIWMzIza/hUA5al+rKW/W/9rqCXu85uhctLgrTyd8xnt+BMfIvtNS4257jCMiJI3dpHNmLoEIK4shWEBUShgrM7bw6bnyE9t5KgS0ZLTUBrIloKXHOW/Zv3rqf/N/fMZA2/Qaasqd/uY9ImQNw5CiBI1cpHLnDceQKx567LPhnd1tMD+PcjRNsObuKLWdXcfzq37c8VipnJRoUbUezEk+RN6igy5ftzduTJ5u/UDHhW0XxYjD9J+2+d1dInvQhy+dJOTCe343p0C+YTm5Asybd+rA5AEf2wqjshZ2/A3KC0Ywy+jhHDFHKeXxJuu78nRjtvNMq4dLti/INwV64Drai9bGVbP5Q+3u95ykmOZpPNrzIoSu7MGhGBtT9gvZlnnd3WC6npzzJlXkvljcv5MsL770bgI9P0v1fIO7KoRxM3jWMXw5NBqBdmed4rc7nmAyeO2RUZmtW4ik0NEZsfpU1J+YSYA6if+3hWaIPAb0yXD2O8cRvmCI2YLxy5JbHlDkAe1h17GHVceQphyNPGVRg7owLRtPAHOBsSw888BlkpZxX8v8t8rWUGwQZLCRdjUr7/38nAOLQ7KnO2+NtqWC3OF9/c2lKOb/cmf3A5O+8eu8TiPLP8Z+r/DlwhIShshXEERIGftl11cZfKcWJawfYcsZZwJ+LPZH2mIZGxXy1eaxIW+oXaUPeIM8fX1c8vLatYcqPcOo07NsP1aq6OyIhXEAzYC9cG3vh2qTaLc5b4c/twHR+J4aL+9GsSRijj0L00YeetSNbAeeJ2gLVsBeuiyNPWecdZ1lQqH9uRrdZxLht77H2xDzGb3ufi/Fn6VPjI6+7gONNpJjXqQrlNRbN1wgN9SUmRor59LLYUhj55+tsOr0cgD41PqRzxdekSL2DpiU64lB2Rmx+jcWHpxDil5PuVd50d1jiv5JjMB/5FdOhJc4vNv9SmgFHWHVsxRpiL1gLR95yoIceazUN/LKh/LKl3cpuCA3FqpMz6pnBoRwcuryLP8+sZMvZVVxJjEp7zGQwU61AAx4r0pZ6hVsR6p+BJ2yERwgO1mjdUrF0OSxcpKhWVY5lwssYfXCEVccRVh1r3VfBbnH2bxJzDsONc2g3zqKlxDrb2tutzhO7aM6TtgE3+2TJgSNnSRy5Snl8J6WZzWz04Z36Y8kfXIRpe0ey4OB3XIo/x/sNJ+Br0mdnf95OB9/mhMgY8ak3+HhDLw5c2oHJYObdBuP+bSMu7qZ5yWeIS43hu51D+HnvCEL8ctCuzHPuDitrUwrj+R2Y98/FeOqPtJ7V03pVL9kcW/HGEJDDvXEKl7k5jNwfp5ez+fSvXE26mPaYn8mfWgWb8ViRttQu1Jwgn2xujFS4w7NPayxdrtiyDaKiFGFhUtALL2b0QYUWwx5aDPc1yvIumqbRo8pA8gcXZvSfA9l8ZgXRiRf5rMVMQvzku4SnkWJeZEkxydG8v6Yzp2IOE2AO5pNmP1GtQAN3h6ULT5V/iRsp15jz9zjGb3ufbL6hNCwmPS1lOpsF07FVmPdMu6XHXXve8tjKd8Ra+nHdtO0W96eU4vi1v/nj1DI2nV5+yxX4AHMwjxVpTYOi7aheoKFcPcniihT53zB1Cxcr3hwgxbwQ4uE1K/E0uQLy88mG3hyJ3sPAVR0Y2Wo+uQMLuDs08R9SzIss53JCJO+t6URU3ClC/XMzouU8SuQs7+6wdOWFau8Tl3KdFcdm8OWmV8nmF/rIw/eJB2RJxLx/DuZ9MzAkXgVAmfyxlu+IrVInHLlLuzlA4UqRsadYd2I+G08v5WL82bTp/qZA6hVpTaNiT1AjrDE+Rt97zEVkNZ2e0dixU7FyFfR5QREUJAW9EOLhVc5fj3GPL2PQuq6cu3GCN1a0Z2Tr+V49dJ3eSDEvspTI2AjeXdOJ6MQo8gYVZFTrhYRlK+busHRH0zQG1P2S2NRr/HlmJZ9seJEJ7VfKzj0jWVMwH5iHedcUDMnXAXAE5cVapTvWSp3AT4YU8xYptiT+PLOS1cdnc+DSjrTpfiZ/ahdqQeNiHahVsKlcgRd3VbMGFC0KZ87AilXQpZO7IxJC6FWR0NKMe3w5g9Z24XzsSd5c+QRftJxD6VxV3B2aQIp5kYVEXDvE+2s7cyPlKoVCSjKy1XzyBIW5OyzdMhqMDG74LdeSLnP4yl98uK4HE9qvJMQvp7tD8y52K+aDCzDv/D7tSrwjpDCWuv2xlX7cOeyO8AoX48+y9PBPrDkxl0SLc/hAg2agZsGmNC/xDHUKtcDfHOjmKIUeaJpGp2dg1GjFol8UzzwFJpNcnRdCpE/eoIKMbbuUD9Z14/i1A7yz6mmGN59O1QJyV6a7yTjzd6CXsQdBX2MlutPhK3v4YF03EiyxlMhRgRGt5mZqz87enKeY5GgG/NqWSwnnqZC3NqNaL9DlLb+emCPjqU34bhqJIeY04BxCx1LnFWzlOuijN/oM4Il5ehRKKQ5e3sHiQ1PYdm4NDuUAIF9QIVqHd6NVqc66bJ/obXnSo9RUxVPPKmLj4LNhGo0b3V7MS570QfKkD1khT0nWBD5e34t9F7dgNvgwuPF3NCzazt1hPRQ95elBxpmXQQOF19t74U/eW/MsCZZYyuepyddtfpEhmlwo1D83n7eYRaBPNv65vJMxW95GzhE+Gu1aBH6L++K/9GUMMadx+OcgpdlQkl5Yja3C01m2kPcmSil2nP+NAb+25a1VHdlydhUO5aB6WGO+aDGbGc/upEeVgbos5IVn8PXV6PCE8+8Fi2SfLIR4dAHmID5vOZv6RR7H6rDw2ca+rDw2y91hZWnyjVB4ta1n1/DZxr5YHRaqF2jEJ81+kttUM0CR0NIMbTKVweu6sj5iEQVDitOjylvuDkt/rMn47PgO818/oyk7ymDGWrUnljovy1i4XkIpxfbz65i172uOXzsAgI/Rj+YlnuGp8n0oGlrGzREKb/LUkxpz5ikOHISjRxVlysit9kKIR+Nj9GVIkx8Yv+19Vh2fxdit7xCbcp2ulQagabKPyWxSzAuvtSHiF0Zufh2HslO/SFs+aDxJl7d/60X1sIa8UW8kY7e+w7S9oyieozz1Crdyd1i6YTy7Fd/1wzDEngfAVrwJqY3eQ4UWdW9gwmX2X9zCD7uGpxXxfiZ/nij7As9W6C93C4kMkSuXRrMmirW/wbyFik+GyBdtIcSjMxqMDHzsK7L75WTOgfH8tOcL4lOv07fmx1LQZzIp5oVXWn5kGhO2D0ahaFHyWd6pPxaj3Jqc4R4v3YNT1w+z7MhPjNj0KhPar6JI9nB3h+XZkmPw/WME5iPLAXAE5SO12RDsJZq6OTDhKudunGDK7k/Zfn4dAH6mADqU7c2zFV4mu38uN0cnvF3nThprf1Ns3Agvv6TIl0++aAshHp2mafSuMZhsfjn4ftfHLPzne5KtSbxebwQGTVpyZxb5pIXXmfv3BL7ZPgiFokPZ3rzbYLwU8pmof+1hVMpXhyRrAkPX9yIhNdbdIXks46mNBEx/AvOR5Sg0LFV7ktRrhRTyXiIuNYYJ2wfTZ0ljtp9fh0Ez0qHsC8x6dhcv1fxICnmRKcJLaVSvBnYHLPxF2s4LIVzrmQr9eLv+GDQ0VhybwajNr2N32NwdVpYhxbzwGkoppv71OT/u+RyAbpXf5LU6n8vZwUxmMpgZ0mQKuQPDiIo7xRebXsHusLs7LM9iScR33RD8l76CIekq9pwlSO46D0uTD8BH+nTQO6UUGyIW0/uXBiw78jMOZadu4Vb8+NQmBtT9Uop4kem6dnZejV++AuLjpaAXQrhWm/BufNB4EgbNyPqIRXy6sR9Wu8XdYd3mj02Kj4cnkJzsPftBr65yDhw4wEsvvUSNGjWoUqUKnTp1YtWqVe4OS2QAh3IwYftg5h2YAMBLNYfQu/ogabfjJqH+uRnW7Cd8jH7sitzA9L2j3B2SxzBE/kXAjA6Y/1nkvBpfvTfJ3X/Bkb+Su0MTLhAVd5r313bmy02vcCPlKoWzl2J0m0V82nw6hUJKujs8kUXVrgXFi0FyMiz71d3RCCG8UZPiT/Jx0x8xG3zYcnYlH2/oRaot2d1hpVm1WjHkE8WiX1I5e9bd0biO1xbzO3bsoFu3buzZs4c2bdrQpUsXrl69ysCBA/npp5/cHZ5wIbvDxqjNr7P86DQ0NN6sN4rOFV91d1hZXniuyrz12GgA5hwYz45z69wckZs57Ji3f4v/wucxxEXhyBZGcqfpWBq9CybpmFHv7A478w9+S58ljdl7YTNmoy8vVBvE5A4bqJK/vrvDE1mcpmlpV+cX/qKwWLznqpQQwnM8VqQ1n7WYia/Rn12Rv/PBuu4kWRPcHRar1yq+HKVQCrp18aN0aXdH5DpeWczbbDaGDBmCpmnMnj2bTz/9lEGDBrFs2TKKFi3KmDFjiIqKcneYwgUsthSG/d6H9RGLMGhGBjf6jnZlnnN3WOJfzUs+w5PlXgRg5ObXuRR/zs0RuYcWfxn/RS/gu30imnJgLfckST2X4ihY092hCRe4FH+Od1Y/zZTdn2K1p1KtQEOmdvyD7lXexGz0cXd4QgDQvBnkygXXrsH6De6ORgjhraqHNWJEq7kEmIP4+9I23lvTifjUG26LZ91vii9GOAv5JzvAB4MCvOrOXa8s5nfs2MG5c+do164dZcuWTZseHBzMyy+/jNVqZcmSJW6MULhCsjWRj9Y/x7ZzazAbfRnW7Gealujo7rDE/9Ov5seUyVWVeMsNPt3YF4s91d0hZSrjqT8ImPkkxsjdKHMAKa1Hktr6S/ANcndo4hEppVh7Yh59lzbl4OUd+JsCeeuxrxnZaj5h2Yq5OzwhbmE2azz7tPML7Nz5CqXk6rwQImNUzFeHr9osItg3lKPRe3ln9dPEJEdnehzrNyg++9JZyD/RHt56Q/OqQh68tJjftWsXAPXr335r481pu3fvztSYhGslpMby/trO7L2wGX9TIF+2nE3dwi3dHZa4A7PRhyFNfyDYJzvHru5n8q5h7g4pczjs+GwZi//S/mgpN7DnKUtSj0XYyj3h7siECyRY4vh040t89eebJFkTKJ+nFpOf/J22pbt73RcF4T06tIeAADh9Bnbscnc0QghvVjpXFb5us5hQ/9xEXD/E26ue4mrixUxb/tZtik8/Vzgc0P5xeGeghsHgfcdnryzmz5w5A0CRIkVueyx37twEBARw1pt6PshiYpKjeXv1Uxy+8hfBPtkZ1XqhtEn1cHmDCvF+I2fnhMuO/MQfp5a5OaIMlnQdv8Uv4bPrBwAsVbqT3GUeKlSu1nqDE9cO0n9ZCzafWYHJYObF6h8ypu0SCmS7/ZgjhCcJCtJo387595y5cmVeCJGxiucoy9i2S8kdWIBzsSd4c2UHLsZnfA329wFnZ3d2B7RqCe++7Z2FPICmvPA+q969e7N161bWrVt3x4K+QYMGJCUlsWfPnju+3uFwYDB45XkO3bsUd55XFrXhbMwJcgbk5dtnVlEqdwV3hyUe0IQ/P2Larq8I9AlmZvdtFMkR7u6QXM4RuRf7vJcgNgrM/hifHIOhkjT/8AZKKZYc/JGvfn8Liz2VAtmKMLL9XMrlq+7u0IR4YBcv2Wn9+A1sNpg9IxtVKpvdHZIQwstdiD1D/0VtiLxxijxBYUx6djVFc2RML3RHj9no9WIc8fGKRg3NjB8TjNnsnYU8gMndAXii2NhYd4fwwEJDQ4mJiXF3GJkiMvYU7615liuJUeQNKsio1gvJZQrTxfvPSnm6l67l3mDvuS0cuLSdt5d2YmL7Vfia/N0dFuCaHJkOLcF3/cdodiuO0KKktP8GR65SILl3GXdtS6m2ZMZufZf1EYsAqFuoJe81/IZg3+yybd+B7PM8l5+v80rVylUw5cdkPhvm/p6mxb3J9qQPkqe78yeE0a0X896aZzl34wQvzm3KqNYLKJ6jnEuXExWleGWAIj4eKleCoR/aSEi4cctz9JSn0NDQ+z7HKy8/BwU5O5aKj4+/4+MJCQkEBwdnZkjiEZ26fpiBqzpwJTGKQiElGdt2mXQwpUNGg4kPG39Pdr9cnI45woTtH7g7JNdQDnz+/Bq/tR+g2a3YSjYnqdtCZyEvdO9q4kUGrnoybdSMl2p8xLDm0wj2ze7u0IRIl+5dNTQN/thk5WSE192gKYTwQLkC8jGmzRJK5qzIjZSrvL3qKY5G73XZ/K9fVwx8V3HtOpQsASM+1/D19d4r8jd5ZTFftGhRgDu2i4+OjiYpKemOt98Lz3Tw0k7eWtWRmORoSuSowJi2S8gTFObusEQ65QzIy4eNv8egGVhzYi5rT8xzd0iPxpqM369v4rN7KgCW2i+T0n689FbvJY5G7+XV5a05fvVvsvnmYFTrBXSu9BoGzSsPnyKLKFxIo0lj59+z5kgxL4TIHNn9czG69SLK5alBvOUG763pxIFL2x95vsnJivcGKy5cgLAC8PUojeBg7y/kwUuL+Zo1nWM3b9my5bbHbk67+Rzh2bafW8f7azuTYImlfJ5afN3mF0L9c7s7LPGIqhaoz3NV3wXgm22DOXX9iJsjSh8t4Qr+C3piOvkbymgmpfVILI+9AVLoeYUNEYsZuKoj15IvUzR7aSa2X02V/I+5OywhXKJnN+cX3d83QmSkFPRCiMwR5BvCyFbzqZL/MZKsCQxe243dkRvTPT+7XfHJp4qjxyB7iLOQz5kzaxTy4KXFfN26dSlUqBArVqzgyJH/FQnx8fF8//33mM1mnnzySfcFKB7I2hPz+HjDC1jsKdQp1IKRrecR5Bvi7rCEi3Sr/AY1wpqQak/m040vkWTVV7tNw5XD+M/phPHyIZR/KMnP/CzDznkJpRQz933Nl5tewWpPpU6hFoxvt0J6qxdepVQpjYYNzDgcMHueFPNCiMzjbw7k8xazqFWwGan2ZIauf56tZ1c/9HyUUnwzUbF1G/iYYcQXGgULZp1CHry0mDeZTHz22WcopejevTtDhgxhxIgRdOjQgTNnzvDWW29RsGBBd4cp7mH+wW/56s83cSg7LUt24pNmP+FnCnB3WMKFDJqBwY0mkjuwAOdjTzJ267voZXANY8Tv+M/viSHhMo4cxUnqOh9HmPRo7g3sDhtjtr7D9H1fAdC54qsMazaNQB/pZ0V4n5dedHZAunoNREfrY/8rhPAOviZ/hjX7mYZF22F1WBj2ex82RCx+qHksWAS/LAFNgyEfalQon7UKefDSYh6gTp06zJkzh2rVqrFq1Srmzp1Lzpw5GTt2LL1793Z3eOIulFJM3jWMKbs/BeDZCv15t8F4TAYZOscbhfjl5KPGkzFoRjaeWsKaE3PdHdK9KYX5r5/xW/YamjUJW5F6JHWZi8peyN2RCRdItiYydEMvVh+fjUEz8Ea9kbxUcwhGg9HdoQmRIapVNVOlMthsMG+BFPNCiMxlNvrwYePvaVHyWRzKzohNr7Lq2OwHeu2mPxUTv3Put155WaNJ46xXyIOXD01XqVIlpk6d6u4wxAOyOayM2fI2604uAOClmkPoXPFVN0clMlr5vDXpVe19ftrzBRO3f0i5PDUokt0Dx5+3W/H9/VPMBxcCYK3UmdQmH4JRTjR5g5jkaD76rSfHru7Hx+jHh42/57Eird0dlhAZrmd3jf1/K5b9Cj26K0KzZ80vxEII9zAaTLzbYDx+pgB+PTqdMVvfJtmWyNPl+971NcdPKD79XKEUdHwSunTKvHg9jddemRf6kmJL4pMNvVl3cgEGzci7DcZJIZ+FdKn0GtULNPq3/XxfUm3J7g7pVimx+C3pi/ngQhQaqY0HkdrsYynkvcTlhEgGrnySY1f3k803B6PbLJJCXmQZtWpCmdKQkgJzpe28EMINDJqB1+uO4NkK/QGYtHMos/ePu+Nzr11TDPpAkZLi3H+98ZqGpmXdk5BSzAu3i0uN4f01Xdhx/jd8jH4Ma/YzrUp1cXdYIhMZNAODGk0k1D83Z2KOMmnnx+4OKY0Wc5aAuV0xnduBMgeQ8uS3WKs972ygJXQvMvYUA1d2IDIugjyBYYxvt5xyeWq4OywhMo2mafTu5dyf/bLEOVazEEJkNk3T6FtzKM//O9rRz3tHMGX3Z7f0p5Saqhj8keJKNBQuBMOGaphMWfv7mBTzwq2i4k7z+q/tOHRlF4E+2RjZaj51C7d0d1jCDUL9czOo4UQ0NFYcm8Gm08vdHRKGyN0EzO2MIeY0juD8JHeZg714E3eHJVzk1PXDDFzVgSuJURTMVoJxjy+nUEhJd4clRKarWwfKloXUVOnZXgjhPpqm0bPq2/Sr6byoM//gREZvGYjNYUUpxcivFIePQHAwjPwy64wlfy9SzAu3OXhpJwN+fZzIuAhyB4Yxtu0yKuar7e6whBtVD2tEl0oDAPh6y9tcjD/rtlhMh5fiv+hFtJRY7Hkrktx1Ho7cpd0Wj3CtI1f28vaqp4hJjqZEjvKMfXwpeYLC3B2WEG6haRov/nt1fuky522sQgjhLs9W7M9bj32NQTOw9sQ8hq5/np9nJ7FuPRgN8NkwjUJZbAi6u5FiXrjF7xFLeG/Ns8SlXic8V2Umtl9F8Rxl3R2W8AC9qr1H+Tw1SbLG8/nGl7HaLZkbgHLgs2UcfmsGozms2Eq1IrnTdFRQnsyNQ2SYfy7v4r01zxJvuUG5PDUY3eYXQv1zuzssIdyqdi0oX+7fq/NzpZgXQrhX29LdGdZsGr5Gf3ZF/s6sC8+A7zXefEOjejUp5G+SYl5kKqUUs/aP4YtN/bE6LNQv0pav2ywmZ0Bed4cmPITRYOKDxpMI8gnh6NV9/LTny8xbuDUZvxVv4bNrMgCW2v1IaTcGzP6ZF4PIUAcv7WDQ2i4k2xKpmr8+I1vNJ9g3u7vDEsLtNE2jT+//XZ2/elUKeiGEe9Ut3JL3ai4ASyiGXPvI8UwHajU54+6wPIoU8yLTWOypjPrzdabtHQU4x5Af2nQq/uZAN0cmPE3eoIK822AcAAv/mcSu8xsyfJkq/jL+C57HdGItymAmpfWXWB57EzTZTXqLvy9uY/C6bqTYkqhWoCGftpgh+x8h/qNGdahYASxWmDVHinkhhHulpCimjalO6qqlmFILkmQ8xWu/tuXgpR3uDs1jyLdUkSniUmMYtLYzv51ciEEz8ma9UfSr9TEGKZTEXTxWpA0dyvYGYOSfA7iadCnDlmWIPoptcluMlw+i/LKT/MxP2Mo9mWHLE5lv/8UtfPhbd1JsSVQPa8ynzafjZwpwd1hCeBRN03jxBefV+eW/wpUrUtALIdxDKcXosYoTJyHEUIrxj6+kdK4qxKfG8O6aZ/nt5EJ3h+gRpJISGe5mj/UHLu0gwBzE5y1m0a7Mc+4OS+hAv5pDKZGjArEp1xmx6VXsDrvLl2GM2Ij/vO4QG4UjtBhJXefhKChDk3mTA5e28+G6nqTYkqkZ1oRPm03D1yRNJ4S4k+rVoEpl59X5n6dLMS+EcI8ly2DNWjAYYPjHGqUL5+XrtotpWLQdNoeVkZsH8POekTiUw92hupUU8yJD7YnaxGvL2/xnDOdfqVlQhvYSD8bH5MeQJpPxMwWw/+JW5vw9znUzVwrznmn4LXsVzZqEVrwBSV3nokKLuG4Zwu2ORu/jo996kmpPplbBpgxr9jM+Jj93hyWEx9I0jX4vOa/Or1wNp89IQS+EyFwH/1GMn+Dc97zcV6NaVec+yc8UwEdNfqBrpdcBmP33WIb/3ocka4LbYnU3KeZFhlBKsfDgJAav60q85QZlclVlYvvVFAuVHuvFwykYUoI36o0EYOb+r/n74rZHn6ndiu+GYfhuGomGwlqxE8bn5oBfyKPPW3iM0zFHGLyuG0nWBCrnq8fHTX+UQl6IB1CxgkbDBuBwwOQpUswLITLPtWuKjz5W2O3QpDF07Xzr4wbNwIs1PuCd+mMxG3zYcnYVry1vw/nYk+4I1+2kmBcul2pLZuTmAUzePQyHctCqVGfGtF1CjgAZ2kukT4uSz9KyZCccysGXm14lNuVa+meWEoffkn6YD8xHoZHa6H1Sm3+CZjS7LmDhdlFxp3l/TWfiU2Mok6sqn7aYIbfWC/EQXn5Jw2iALVvh7wNS0AshMp7Nphg6THHtGhQtCoPf09C0Ow9D1zq8K1+3XUKugPyciz3Bq8tbs/XsmswN2ANIMS9c6lL8Od5c2YH1EYswaEZerfMZ79QfJ1fDxCMbUPdLCoWU5GrSRb76802Uevgvl9qNcwTM64rp3HaUOYCUDhOxVu8FdzlQCH26khDFe2ue5XryFYqHluOLVnMIMAe5OywhdKVwYY3HH3f+/d33Kl37XCGEeBjfTlL8fQACA+GL4RoBAff+flYuT3UmdVhHxbx1SLIm8PGGXvz015fYHNZMitj9pJgXLrPz/Hr6L2vJiWsHyOabg1Gt59OxXJ+7nlET4mH4mwP5qPFkzEZfdpz/jV8O/fBQrzdE7SFgTmcM10/hCMpLcudZ2Es0zaBohbvEJEfz3ppOXE6IJCxbcUa2nk8231B3hyWELvXupeHnB4cOw+Y/3R2NEMKbrVuvWPiL8++PBmsULvxg9UOof26+arOQJ8u9CMCcA+N5a1VHLsWfy6hQPYoU8+KR2R12pu0dyYe/9SDecoPSuaowqcNaquSv7+7QhJcpkbM8L9f6BICpf33Gsav7H+h1poML8V/4AlrKDex5K5DcbQGOPNJ/g7eJT73B+2s6p3W4Oar1AkL9c7s7LCF0K1dOjc7POv/+forCZpOr80II1zsZoRj5lXP/8lwPaFD/4S4EmgxmXqvzOR81nkygTzYOX/mLvkubsfHU0gyI1rNIMS8eSUxyNB+s68as/WMBeKJML8Y+voy8QYXcHJnwVk+U6UX9Im2xOax8trEfiZb4uz/ZbsXn98/w+20omsOKrVQrkjvNQAVJ/w3eJsmawOB13TgVc5hQ/9yMar2QvEEF3R2WELrXrYtG9hA4fx5+XenuaIQQ3iYuXvHBEEVqKtSqCS++kP47ehsX78DkDuspl6cGSdZ4Pv/jZb76800SUmNdGLFnkWJepNu+C1vot7QZey5sws/kz+BG3/F6vRH4GH3dHZrwYpqm8Xb9MeQNKsjF+LOM2/rundtyJsfgt/glfPbPBiC13gBS2o0Fs3SC5m0sthSGrn+eo9F7CfYNZWSrBRQMKe7usITwCoGBGi887/xyPfVHRVycXJ0XQriGw6H49HPFhQuQPx98MkTDaHy05rn5ggsztu1SulceiIbG2hPzeHFJI6/tHE+KefHQ7A4bP+8ZmdbBVJHs4Uxsv5pmJZ5yd2giiwj2zc6Hjb/HoBnZeHopq4/PueVxQ/RxAmY/i+n8TpQ5gOQnJmKt84p0dOeFbA4rwze+xP6LW/E3BfJlyzkUzyFNKIRwpQ5PQLGiEBsHU36SYl4I4Ro/T1ds3wE+PvD5pxrZsrnme5rRYOKF6u8zpu0SwrIV51rSJT7e0ItPN/blWuJllyzDU0gxLx7KlYQo3l79NLP/HotC0Sa8O98+sYaioWXcHZrIYsrlqUHv6oMA+HbHR5yJOQqA8cQ6/Od1xRAXhSOkEMld52Iv2cydoYoMYnfYGbHpNXac/w0fox+ftZhJmdxV3R2WEF7HZNIY+IbzS/ay5XDihBT0QohHs3Wb4ufpzr/ffVsjvJTrL7hUzFeHH57cQJdKAzBoRjadXk6n6dW4mnTJ5ctyFynmxQPbeGopfZc25Z/LOwkwB/Fh4+95u/7X+JkC3B2ayKI6VXyV6mGNSbUn89nGfji2jMX/1zfQrEnYCtclqdsCHLnC3R2myABKKcZte5c/Ti/DZDDzSdMfqZy/nrvDEsJrVauq0bQJOBww9hsZqk4IkX6Rkc7b6wGeehLatMq4Oyd9Tf70qfEh37ZfTcmcFUmxJpFiTcyw5WU2KebFfSVY4hix6TU+/+NlEiyx//ZW/xtNij/p7tBEFmfQDAxqOIEcfrk5c+MYEw46O2K0VHuOlKd+AP/s7g1QZAilFJN2fczq43MwaAY+aPQdtQrJ3RdCZLRX+zuHqjtwEH5b7+5ohBB6lJzs7PAuIREqVoABr2ZOE8hSuSox6Yl1rH8lioIhJTJlmZlBinlxTwcubaff0qasj1iEQTPQo8pAxrf7lbBsxdwdmhAA5EyM4ZOUEDQFv/paWFK1HZbGg8FgcndoIoPM2PcViw/9AMDb9cfQsFh7N0ckRNaQN4/Gcz2cX7y//V6RlCRX5/XG4VDExTtzZ7PJHRYicymlGDlaceo05AiFTz/RMJszrz8jTdPwN3vXHcXybVfcUbI1kR/3fMGywz+hUOQLKszgRt9SPm9Nd4cmRBrT4WX4rv+EWrYU+gTnYorxKmPPLaT4tV6UyFne3eGJDDBj9xhm7h8DwKt1PqNVqS5ujkiIrKVLJ1i5CqIuwLQZildelo5FPU1iouJkBJw8CSdOKs6dh9hY509cvLOpxE0GA/j4KHLmgIIFoVBBCAvTKF4MypcDPz/Jr3CdhYtg/QYwGuHTYRq5csn69aikmBe32XdhC19veYtLCecAaBPejf61hxNgDnJzZEL8y5aK78bPMR9c6Py3SD2ebT2Sv7e+zq7I3xm+sQ/fPrGWIJ9sbg5UuNKKozMZv20wAL2rD6ZjuT5ujkiIrMfHR+ONAfDeYMX8BdC8mcqQjqvEg7NaFQf/gR07nT2Dnz7z4K91OCAlxXlyJuoC7NwF4LxabzZDubKKalWhejWNihV45GHDRNa1b7/i20nOdeu1VzQqV5J1yRWkmBdpEi3xTNn9KSuOzQAgT2AYb9X/mhphjd0bmBD/oV2LwG/VOxijj6LQsNZ5BUud/hgMRt5vOJH+y1oQFXear7cMZGiTqWgyHJ1X2BCxmPHb3gOgS6UBdKv8hpsjEiLrqldXo0ljxcY/4MuRiinfO3u8F5nHZlPs3AVr1jl/JyXd+niePFCqJJQsAcWKauTIAdlDICQEgoNBKUi1gMUCqSlw+QpERcH5KMX583D0KERfhb8POH9+nq7IlQtaNFO0bKFRsgRyfBUPLDpaMXSYwu6Als3hGRnN2mU0JY1lbhMTE+PuEB5YaGioS+LdHbmRMVvfIToxCoD2ZZ7npZpD5Gq8i7gqT1maUpgOLsD3jxFothSUfygpbb7CXvSxW552NHovb67sgM1h5eVaw3imQr8Hmr3kyHNtPbuGYb+/iEPZebZyP/pW+0S+RHo42Z704VHydP26okcvRVwcvPSixvM9ZZvMKP/N07lzipWrFWvWwrXr/3tO9uxQpzbUra1RrRqEZn+0fCiliIyCvftg7z7Frt0QH/+/x4sXgw5PaDzeRm7Fv0n2e3dmsSgGvKk4dBhKlIDJ32puXWf0lKfQ0ND7PkeK+TvQS4Lh0VfI+NQbfL/rE9aemAdA/uAivF3/a6rkr++qEAX62nF4pOQY/H4biumks/tkW5F6pLb6EhWU545PX3b4Jybs+ACDZuSr1gsfaMgyyZFn2hO1mY9+64HVYaF5iWf4ssNMYm/EujsscR+yPenDo+Zp3W+K4Z8rzGb48QeN4sWkqMsI2bNn5/eNMcya4yyq/zcdWrWE5k01SoeDwZBxn7/Fotix05nzrdvBanVOD8kGT3WEpzpqj3wCQe9kv3dno8c6WLoMgoLgx8kaYWHuXU/0lCcp5tNJLwmG9K+QSin+PLuSb3d8xLWkS2hodCzXhxeqD8LfHJgBkWZtetpxeBrjqU34/jYUQ+IVlMGMpf5ArNWfB+3ug3EopRi5eQDrIxaR3S8n3z2xjjxBYfdcjuTI8xy6vJv313YixZZM/SKPM6TJZHLlzC150gHZnvThUfOklOL9DxTbtkO5sjBpoiZtql3Iblds2Qpz5xv455AdcHZYV6c2PN5Wo14dMrUn8Jvi4xXrfoN5CxUXLzqn+frCE+3g+Z4a2bNoUS/7vdutWq34YqRC02DUlxp167h/3dBTnqSYTye9JBjSt0JGxZ1m4vYP2B21EYCC2UrwToOxVMhbKyNCFOhrx+ExUuLw3TQS86HFADhCi5LSdjSOvA/WS32KLYk3VjxBxPV/KJ2rCmPbLsXH5HfX50uOPMuJawd5Z/XTJFriqBHWhOHNp+Fj9JU86YTkSR9ckafoaOft9omJzk6tunRy/5d1vVPKefX7hynOIbwAfHzg8bbQpZNGWAHP+IxtNsWmP2HOXMWx485pgYHQo5tGp2fA19cz4swsst+71bHjiv6vKixWePEFjRee94z1QU95kmI+nfSSYHi4FdJiS2HugQnMOzgRqz0Vs8GHzpVepWul1/E1+WdwpFmbnnYcnsB4Zgu+64ZgSLjk7OSu2nNYHnsDzA+3nl6KP0f/5a2IT42hdamuvF1/zF3bWkuOPMfZG8d5a9WTxKZcp2LeOnzZag5+Jue4sJInfZA86YOr8vTrCufY0T4+MHWy3G7/KA4cVEya7OydHpy3Jnfr6k/7timEhnrm56qU4q898N33ihMnndPy5IG+fTRatcg6HeXJfu9/YmMVL/ZVXLoM9erCiM+1DG0G8jD0lCcp5tNJLwmGB18hd0X+zsTtH3Ah/gwA1Qs0YkDdLykYUjyDIxSgrx2HO2mJ0fhsGoX56AoAHNkLk9LqCxxh1dM9zz1Rmxi8risO5eCNeiNpX+b5Oz5PcuQZLsafZeDKJ7madJHwnJUY1WbRLUMMSp70QfKkD67Kk1KKt99ztucuVhSmfO/eDq70KOqCYuJ3ij+3OP/38YFnn4bu3TSKFM6hi+3J4VCs/Q2m/Ki4csU5rWoVePdtjcKFvH99kP2ek92ueOd9xe6/IKyA8wRfcLDn5F9PeXqQYv7ujU6FV7iSEMWw31/kg3XduBB/hpwB+RjS5AdGtJonhbzwHA47pr/nEjDtccxHV6DQsFTtSVLPpY9UyANUD2vEi9U/AGDi9g/5++I2V0QsMsDlhEjeWf00V5MuUiR7OF+2mntLIS+E8EyapvHRYI0coc4xzsdPlOtEDyo5WTHlRwc9n3cW8kYDtG8H82dr9O9nIJsHFUH3YzBotGmlMXemRr+XNHx9Yd9+eL634ufpCotF1ousYNJkZyHv5wdffOZZhbw3kmLeS1nsqcw/MJHeixvw55mVGDQjz5Tvx89Pb6FRsSeyzC1PwvMZLh7Af25X/DYMR0uNx563PMndFmBp8sFD31Z/N50qvkrjYh2wKxvDfu/DhbgzLpmvcJ2riRd5d/UzXE6IJCxbcUa1XkiIX053hyWEeEA5cmgM/UhD0+DXFbDhdync7kUpxe9/KLo/r5g+EyxWqFEdpv2k8f47BnLn1u/3NF9fjZ7dNWZO06hV09nz/Y8/K3q/pDh8RNYLb7Z6rWLeAuffHwzSKFFcv+uxXpjcHYBwLaUU286tYfKuYWm31JfPU5M36o2keI5y7g1OiP/Q4qLw+XMs5mMrAVA+QVjqv4m1UhcwGF27LE3j3QbjuBh/lmNX9/PR+p58026lXPX1ENeTrvDumme5EH+GfEGFGd1mETkD8ro7LCHEQ6pRXaNnd8WMWTBytKJMadw+DJUnunRJMXqsc6g3gHx5YcCrGg0beFf78gL5Nb4eBet/h/ETFGfOQv9XFb2eh57dwWTynvcq4PARxVejnSdrnusBTRtLfjODXJn3IqeuH+a9Nc/y8YYXuBB/hhz+eXi3wTjGPr5MCnnhOVLj8fnzawJ+bov52EpnB3flniSp10qsVbq7vJC/ydfkz7Dm08gVkJ9zN07w+cZ+2B22DFmWeHA3kq/y7ppnOB97kjyBYYxus4jcgQXcHZYQIp1699KoVBGSkmDoMLm1+r/sdsWCRYqevZyFvNkMLzwPs6ZrNGqoeVUhf5OmabRopjFnhkazJmB3OK/Sv/q6IjJS1g1vcfWqYvBHzp7r6z8GfXp737rsqaSY9wIxydGM3fouLy9rzr6LWzAbfelW6Q2mPbONVqW6YLjHeNxCZJrUeMw7viNwanN8dk9Fs1uwFapNco9FpLb+EhWUJ8NDyBWQj0+bT8fX6M/uqI1M3j08w5cp7i4uNYb313bm7I3j5ArIz+g2v5AvuLC7wxJCPAKTSePjIRrZssGx4zB6jEL6WoaTEYqXX1N8M1GRnAKVKsK0qRovvmDIEp0FZsum8clQjaEfagQFwqHD8EIfxcrVsm7oXWqqYvAQxbVrULQoDPnAc3quzwrkNnsds9otzPxrLD9s+5wkazwADYu256WaH5E/uIiboxPiX6nxmPfNxGfPdLTUOAAcOUqQ2uBt7MUbQyZfiSiVqxLvN/yG4RtfYvGhHwjLVowOZV/I1BgEJKTGMmhNZyKuHyLUPzdftVlIgWxF3R2WEMIF8ubR+PgjeHeQYtUaKFjQedttVpSaqpg2QzFnHtjtznHY+/fTeKIdWa7g0TSNli2gUiX4/EvFvv3w5UjF/v2Kt97U8PfPWp+HN1BK8dUYxZEjEBwMIz/XCAyUPGYmKeZ16mL8WQat7UJU3GkASuWsxCu1h1MxXx03RyaEkxYbiXn/bMwHF6FZEgBnEW+p0x9beOsMu53+QTQs1p4XYgfx894RTNz+AbkC8tEutJvb4slqEi3xDFrXlePXDpDdLyejWy+iUEhJd4clhHCh2rU03nwdxoxT/DBVEVYAmjXNWl/y9+5TjBqtiIxy/t+oIQx8XSNXrqz1Ofx/+fJqjB8Ds+bA1J8Uq9fCkWOKz4ZB0SJZ+7PRmwWLYM1a5ygMwz/WpI8MN5BiXqcOXtpBVNxpcgbm44Wq79OyVGe5nV64n1IYovbgs3cGxogNaMoBgD1nCax1XsFWqpVbi/j/6lb5DS4nRLLq+Cw+/6M/hXIXo3BAGXeH5fWSrYl8+FsPjkbvJdg3lFGtF1IktLS7wxJCZICnntSIjFQsWOS8Eps3L1Qo7/1f9uPiFd9NUqxY5fw/Z054602NRg28/70/KINB47keULECfPKp4swZ6NNP8e5b0KqlfE56sGu34ttJzmYSr76iUbOG5M0dNCUNmW4TExPj7hDuy6EcHLq8i+ol6mNJlE68PF1oaKgu1qv00hKuYDq8DPOhJRhiTqdNtxV5DGu157AXrQ8eeLLJ7rDx8YYX2HH+N0L8cjDu8eVyhTgDJVsT+ei3nvx9aRtBPiF81XohpXJVeqh5ePu25C0kT/qQGXmy2xUfDlVs2QrZs8Pk7zTCCnjnl37ncHMw/hvF9X8/1iefgJf7agQFpf89e/v2dP26Yvjnir/2OP/v9Ay88rKmu97uvT1P/3U+UvHSy4qEBGjbBga/p58OHPWUp9DQ0Ps+R4r5O9BLgkFfK2RW5pV5So3HdOoPTEdXYjzzZ9pVeGXyx1bmcazVnsORq5Sbg7y/ZGsi76x+mmNX95MvqBDftFtJjoCM74wvq0m0xPPBuu4curKLAHMQo1ovoEzuag89H6/clryQ5EkfMitPSUmK195UHD/uHIbtm3EaBfLr44v/g7p8RfH1WMW27c7/ixSG997RqFzp0d9nVtie7HbFz9MV02Y4/69ezXnbdkiIftaTrJAngMRERb9XnEMNli8HE8Zp+PhInjKCFPPppJcEg75WyKzMW/KkJV7FeGojphO/YTy3A81hTXvMXqAa1vIdsZVuAz6Bbozy4cUkRzNwdQcib5yieGg5Rrf9hWy+99+BigcTlxrD4LVdOXZ1P0E+IXzZci5l8zx8IQ/esy15O8mTPmRmnq5edRb0kZGQJw98M0ajYEH9FAB3Y7crliyDyVMUyclgMjnHUO/Z3XUFTlbanjZtVnz2hbPH//z54cvPNEqW0Md6khXyZLMp3v9AsXMX5M4FUyZr5Mqpj/zcpKc8STGfTnpJMOhrhczKdJsnawrGqD0Yz27DeHYrxqvHbnnYkaMEtlItsJZ9ApWjmJuCdI0ErvHC3MbEJEdTJldVRrZeQKBPsLvD0r0byVd5f62z1/psvjkY2Xo+pXJWTPf8dLstZTGSJ33I7DxdvaZ4Y6Di7DnIlQu+GatRuJC+CoH/ijilGPmV4vAR5/8VKzivxhcr6tr3lNW2p1OnFIM+Uly4AH5+8OEgjSaNPX898fY83ey5fvmv4OsLE8drlC3j+Xn5//SUJynm00kvCQZ9rZBZmS7ypBRa/AWMF//GcGE/xgv7MUQfveXqO4A9TzlspVpgK9kClbOEm4J1vdDQUPae2sbbq54mLvU6FfPW4ctWc/AzBbg7NN26mnSJ99d04uyN44T652ZU6wUUCy37SPPUxbYkJE864Y48Xb+ueP0tZ4dnOXPA+LGa7nowT0lRzJilmD33f8PNvdxXo0P7jBluLituT3Fxio+HK3b/5fy/Zw94qbdnj1/u7XmaNUfx/Q8KTYMvPtVoUN9zc3EvesqTFPPppJcEg75WyKzMo/KkFCTHYIg5g+H6KQxXj2OMPooh+jhaauxtT3cE5cNepJ7zp3AdVEBONwSd8W7m6PjVv3ln9TMkWeOpHtaYT5tPx8fo6+7wdCcyNoL313bmckIkuQLy81WbhS7pXNCjtiVxV5InfXBXnmJuKN58SxFxyjk29ccfadSp7fmFgVKKPzbBxEmKy5ed0xo2cA43lzt3xsWfVbcnm81ZPM5b4Py/Xh0Y+tGjdSaYkbw5Txt+d55cAXhjgMazT3tmDh6EnvIkxXw66SXBoK8VMivL1Dw57GgpN9ASo9HiL6LFXcQQdwEt/gKGG5EYbpxFS42740uVwYQjd2ns+avgyF8Fe4EqqGxhoJMeSh/Ff3P0z+VdDFrbmRRbMnULtWRI0ylS0D+EY1f388G6bsSmXCcsWzFGtJpH/uAiLpm37PP0QfKkD+7MU2ys4t1BzlvUNQ1eelGjZ3c8tkfsiFOKcd8o9u13/p83L7z+qkajhhkfb1bfntauU4wcrbBYoHAhGPG5RuHCnreeeGueDhx0nnyzWOHZp+GNAZ43OtHD0FOepJhPJ70kGPS1QmZlj5wnpSA1Hi3pKlriVQz//tYSr6ZNc/4djZZ0Pa1n+bvODg0VnA9HaFEcuUs7f3KVxpGjBJh80h+njv3/HO298Ccf/tYDqz2V6mGNGdbsJ7nl/gHsidrMJxteINmWSHjOSnzecjah/rldNn/Z5+mD5Ekf3J0ni0Ux9hvFryuc/zds4GwfHRjoOYXa5SuKaTMUK1eBwwE+PtC9K3TvquHnlzlxujtPnuDoMcUHHymuRENQIAz/RKNWTc9ZT8A783TqtOLV1xXx8dCgPnw2TMNo9KzP/WHpKU9SzKeTXhIM+lohs7J75smajBYXhSHhsvNqekI0WmI0hoQrzv8Trzin2VMfeHkKDfyz4wjKh8pWAEe2Aqjg/DhCwlChRXGEFAazn4venXe4U472XviToeufI8WWTKV8dfmsxUwCzEFuitDzbYhYzFd/voHNYaVq/gYMa/6zyz8v2efpg+RJHzwlT8tXKMaOV1itUKgQvPuWRrWq7i0YYmIUM2crli4Dy79dxzRuCK/218ifycPqeUqe3O36dcWHQxUH/wGDAV57RePZpz3nbg5vy9PFi4r+AxRXrzqHoBs/JvNOYGUkPeVJivl00kuCQV8rZFaW3U8j7sxBDLHn0G6cw3DjPIYb//6deOWB56N8g1EBuVABOXEE5kIF5kYF5nJOC3ROV4G5Uf6hYDRn4DvyPnfblg5e2smHv3UnyZpA2dzV+bLlHIJ8Q9wQoedSSjFj31fM3D8GgIZF2zOo0cQMaZog+zx9kDzpgyfl6fARxUdDnVdeAZo3g9f6a+TKlbnFw+Uril+WKJYsgeQU57QqlaFvH41KFd1TyHhSntzNYlGMHqNYtcb5f/vH4a03Ncxm9xeZ3pSnmBhnIR8ZCcWKwrffaGTL5v7P2BX0lCcp5tNJLwkGfa2QWYLDhuHaSQzRRzFEH3P+XD2OIenaPV+mfIJwBOdzFuJBef4t0vPguPl3UB5UQC65mp6B7rUtHY3ex+C1XYm33KBkzop83mIWOQPyZnKEninVlsxXf77JH6eXAdC54qu8WONDDFrGtKmTfZ4+SJ70wdPyFBevmPKj82q4UhAQAL17aXTsAL6+GVtIHDqsWLDQ2cGd/d+WamVKO4v4mjXce/XX0/Lkbko5O8WbNFnhcEDlSvDZcI3Q7O4tNr0lT4mJigEDFcePQ768MGlixnbwmNn0lCcp5tNJLwkGfa2Q3khLuIIxag+GSwcxXjqA4fIhNFvKHZ/rCMyFCimMI3thHNkL3fI3ftmzRCdznux+29Kp64d5b00nbqRcJU9gGJ+3nPXIw6zpXUxyNEPWP8/R6L0YNRNvPjaKNuHdMnSZss/TB8mTPnhqno4eU4wZ97/x27Nlg3Zt4ckOGgVceIv75SuKjX/A+g2Ko8f+N71qFejcSeOxup5xC7en5sndtu9QfPKpIjER8ueDEV9olCguJ10eRWqq4p33nR09Zs/uLOQLFXT/NuBKesqTFPPppJcEg75WSG+gJV7FeH4nxvO7MEbuxhBz+rbnKJ8g7HnK/dupXDiO3KXJVrw6N5IsbohYPKgH2ZYuxJ3hw996cD72JAHmYIY2nUKNsMaZE6CHOXR5N59u7MvVpIsE+2Tn42Y/UiX/Yxm+XNnn6YPkSR88OU8Oh7PTuWkz/zcMnKZB3TrQuKFGlSrOAu5him2rVXEyAg4chD82Odte32Q2Q/Om0OkZjVKlPKt48eQ8udvpM4pBHyiiLoC/Pwz90H3jn+s9T6mpikEfKnb/5bwrZsI4jdLhnrUtuIKe8iTFfDrpJcGgrxVSlxw2DBcPYDqzGePpPzFeOXzLwwoNR+4yOApUxp6vMvb8lVChReH/3WIsefJ8D5qjuNQYPtnwAgcu7cCgGXmz3ijalu6eCRF6BqUUiw9P4Yddw7ErG4VDSjG8+XQKhhTPlOXLtqQPkid90EOe7HbF9h2weKli1+5bH8udCypXhuLFNEJCICQbhIQ4C/PY2H9/4pxX4I8cgRMn/teZHThPDlSuBE0aazRpBDlyeGbhooc8uVNsrGLoMMWeve4d5lDPeUpNVQz+yLmN+fvB6FEalSt55vbwqPSUJynm00kvCQZ9rZC6YUvFeHYbppPrMUX8jpZy45aH7bnLYi9cG3vBmtjDqoPf/TtDkzx5vofJkcWeytdb3mJDxC8AdCj7Av1qfeL1Y9EnWuL5estbbD7zKwCNi3XgrfpfZ2oP/7It6YPkSR/0lqdz5xWr1yr274cjR8Fme/h5ZMsG5cpCrZrOAl4PbYH1lid3sNkU4ycqlix1/t+kMQx+TyMgIPPyq9c8paYqPhii2LkL/Pxg9EiNKpU9f7tILz3l6UGKeVMmxCGE57NZMJ75E9OxlZhObUKzJqU9pHxDsBWth71oQ+xFH0MFum7MbKFPPkZfBjWcSIHgoszc/zXLjvzMkei9DG0yhXzBhd0dXoY4cmUvIza/RlTcKUwGM/1qfcyTZV/0iPakQoisoXAhjX59nPuclBTFocPw9wG4dFkRF/e/q/FWq/MKfUgIZA+B7KEQXlKjfDkIC/OMdvDCtUwmjbff1ChRXDHuG2dfCOfOKb74DMIKSL7vxmJRfPTx/wr5r0Z4dyHvjeTK/B3o5WwN6OvsksdRDoznd2M6ugLTiXVoqXFpDzmC8mEr2Rx7qRbYw6qB4dHOe0mePF96c7Tz/HpGbB5AfGoMQT4hvN9wAnULt8yACN3Darcwc/8Y5h34BodykDuwAEOaTKFcnupuiUe2JX2QPOmD5EkfJE8P58BB5zCH12MgOBiGDdWoVTPjC1S95SkpyXlr/Z694OvrLOSrVfX+Ql5PeZLb7NNJLwkGfa2QnkKLjcJ8aAmmw0swxF1Im+4IzIOtzOPYwlvjyFfRpb3LS54836Pk6HLCeT7d2I+j0XsB6FC2N31qfIi/OdCVIWa60zFHGLFpABHXnb1ENSvxNK/V+Zxg3+xui0m2JX2QPOmD5EkfJE8PLzpa8eFQ54gIBoNziMPneoDBkHHFqp7ydOOG4t1BiiNHnR0Hjvhco3o17y/kQV95kmI+nfSSYNDXCulWDhvGk+sxH5iP6dyOtMnKNxhbqVbYyrTDXrAGGIwZsnjJk+d71BxZ7RZ+2D2cJYenApAvqBADHxtN9bBGrgox0yRbE5l7YAILD36H1WEhm28O3qw3kobF2rs7NNmWdELypA+SJ32QPKWPxeIc4nDFKuf/tWvBkA80smfQePR6ydPlK4q33lGcPefsNHL0KI2yZbJGIQ/6yRNIMZ9uekkw6GuFdIvkG5gPLsT891wM8RfTJtsK18FW/mlsJZuD2S/Dw5A8eT5X5eivqD8Yu/UdLidEAtC6VFdervUJQb737yjR3ZRSbD7zK9/vGkZ0YhQAdQq14K3HviZHQB43R+ck25I+SJ70QfKkD5KnR7NyteLrsQqLBfLkgeEfa1Qo7/riVQ95OnNW8da7iitXIE9uGDtao0iRrFPIgz7ydJMU8+mklwSDvlbIzKRdO4nPvlmYDi9Ds6UA4PDPga1SJ6wVnkGFhGVqPJInz+fKHCVbE5n61+csO/ITACF+OeheeSDtyjznsT3en7h2kB92DWPfxS0A5A0qyCu1P6Ve4dYe1VmUbEv6IHnSB8mTPkieHt3JCGdHb5GRYDJB3z4aXTq59rZ7T8/Tjp2KT4YrEhKhSGEYM1ojbx7POb5nFk/P039JMZ9Oekkw6GuFzHDKgfH0n5j3zcB0dlvaZHvuslir9cRWui2Y3FNISZ48X0bk6OClnYzd+g7nYk8AkC+oMC9UH0ST4k9i0AwuXVZ6HY3ex+z9Y9l+fh0APkY/Old8lS6VXsPX5O/m6G4n25I+SJ70QfKkD5In10hMVHw5SvHHJuf/1avBR4M1lw1P6Kl5UkoxbwFMmqxwOKBSRfji04xrbuDpPDVPd5Ili3mr1crvv//O77//zoEDB7h06RIAJUuWpGPHjnTu3Bmj8d7tovWSYNDXCplhLImYDy3FvH8WhpgzACjNgL1EUyzVnsMRVsOlndmlh+TJ82VUjuwOG6uPz2XmvtFcS74MQPHQcnQs34emxTu6pWBWSvH3pW0sOPgtuyJ/B8CgGWhSvCO9qr1H/uAimR7Tg5JtSR8kT/ogedIHyZPrKKVYvgK+mahITYVs2eD9dzQaNXz074memKfUVMXoMYrVa53/t2sLbw/UMJuzZiEPnpmnu8mSxXxERARt27YlICCAunXrUqxYMeLj49m4cSNXrlyhSZMmTJo06Z63jeolwaCvFdLVtNhIzPtnYz64CM2SADg7tLNWeAZrle6Zfiv9vWTlPOlFRuco2ZrIksNTmXdgIknWeACCfUNpG96NJ8r2Im9QoQxb9k3Xki6z7sQC1pyYQ1TcaQAMmpHmJZ6mW+U3KBhSIsNjeFSyLemD5EkfJE/6IHlyvbNnFcM+Vxw/7vy/TSsY8KpGtmzpL3I9LU9RUYpPPlMcOQJGAwx4TePpjnhU0zl38LQ83UuWLOYvX77M+vXr6dixIwEBAWnTk5KS6NmzJ//88w/jxo2jTZs2d52HXhIM+lohXUIpDJG78dk7A+OpjWjKAYAjtCjWqj2wlnsSfDxvOLAslycdyqwcxaXGsPrYbJYfnZbWSZ6GRpnc1ahXuDX1CrekcPZwlxxslVJExZ3mr6iN7IrcwF9Rm3AoOwD+pkCalniKThVfISxbsUdeVmaRbUkfJE/6IHnSB8lTxrBaFT/+rJg9F5SCHKHw5hsaTRqlr+D1lDwppVizFsaMVyQnQ1AQfPqJRs0aWbuIv8lT8vQgsmQxfy8rVqzg7bffpnv37gwdOvSuz9NLgkFfK+QjsaViOroS876ZGKOP/m9ykcewVnsOe9H64CFtkO8ky+RJxzI7R3aHnR3nf2Pp4R/Zd/HPWx4Ly1aM8nlqUjJnRUrkKE+JHOUfqDf8G8lXOXvjOGduHOPU9cPsvbCZi/Fnb3lO+Tw1aRPejUbFnsDf7Hknvu5HtiV9kDzpg+RJHyRPGevgP4qRXynO/Hu4bPAYvPXmw7el94Q8xccrRo9VbHC2oKNKZfjoA418eaWQv8kT8vSgHqSYN2VCHB7DZHK+3fu1mReeQ0u4gvnveZgOzMeQfB0AZfLHVu4JLFV7onJ6/m3BQtyJ0WDksSKteaxIa64mXmT7+XVsP7eWfRe2EBV3mqi406w7uSDt+cG+oQT7hBDsm51g31DMRh+SrQkkWRNItiYSm3KduNTrty3HZDBTPk9NahZsQt3CrSiSPTwz36YQQgjh0SpW0PhpCsyYpZg5G/7cCn/tVfTsDp2fBV9fzy+ElVJs2QrjJiguX3beVt/7BY0e3cBo9Pz4RfplqWL+l19+AaB+/fpujkTcj+HSQcx7Z2I6vgbNYQXAEZwfa5VuWCs8A/7Z3RugEC6UKzA/7cs8T/syz5NkTWD/xa2cuHqAiOuHiLj+D5cTIolPjSE+NQbi7z2vfEGFKRIaTtHspamQtzaV89cjwByUOW9ECCGE0CEfH40+vTWaNFaMGq04dBh+mKpY9iu83BeaN/XctuZRUYpxExTbdzj/L1AAPv5Io3w5z4xXuFaWuc1+/vz5DB06lDp16jB9+vR7PtfhcGAweO4t295K2W2owytx7JiKOrc7bbpWpDaGOn3QyrZBM2ap809CABCXEsPVxEvEpcQQl3Kd2JQYrHYLgT7B+JsDCfQJJtg3O4VCS+jy1nkhhBDCUzgcilVrLIwdn8SlS86+mSpWMNG/nz8NG5g9pqhPTFT8PD2ZH39OxmIBkwl69/LnpRf9CQjwjBhFxvPYYn7EiBFYLJYHfv5zzz1H0aJF7/jYxo0bGTBgAHny5GHevHnkyZPnnvPSSzsK0Fe7j7tKuo75n18w75+DIcE5lKAymLGVboO12nM48pZ3c4CPzivy5OUkR/ogedIHyZM+SJ70QfLkHikpivkLYdZsRXKKc1qJEtCjm7OTPJPp1oI50zrSjVf8shgWLFLE/3u3Xs0aMPB1jcKFpYi/Hz1tT7puMz9//nySkpIe+PmtWrW6YzG/adMmXn/9dXLmzMn06dPvW8iLTKIUhqg9mA/Mx3RiLZr931vpA3Jiq9QZa+UuqMDcbg5SCCGEEEJkRX5+Gs/3dI7NPm+BYulyiIiAYZ8qpvwIHdpDy+Y8dEd56XXlimLxUsXipXCzRCpYEPr10Wiczh74hf557JV5V/jjjz8YMGAAoaGhzJw5kyJFijzQ6/Rytgb0dXYJgJQ4zEeWYzowD+O1iLTJ9rwVsVbpiq10WzD5ujHAjKG7PGVBkiN9kDzpg+RJHyRP+iB58gxx8YrFS2DhIkVsnHOawQA1qkPrVhrtHg/FknrDpctMSFD8sRnW/abYt985hB5AieLQs7tGk8bSwd3D0tP2pOsr84/qZiEfEhLCjBkzHriQFxnDcOmgs1f6Y6vQbM57lZTJH1vZdlgrdfaKW+mFEEIIIYR3yhas0es5Zw/36zfA6rWKAwdh127YtVvxxYjrlC3jLO6rVdUoV/bhe8JPTVUcPQYHDsKBg4o9e8Bi/d/jlStB184a9eqCwSBFvPDSYn7Tpk23FPJ3a0svMpYWfxnTsZWYjvx6y9jw9pylsFbugq1se/ANdmOEQgghhBBCPDh/f4327aB9O42oKMWadYp1v0HUBTj4j/Pn5+kKgwHy5lGEhTlvh8+XV8PHDEYTmM2gATE3IPqq4mo0XI6G06fBar11eUWLQqsWGs2bQv78UsCLW3ldMR8REcFrr72GxWKhVq1arFy58rbnhIWF8dRTT7khuiwgOQZTxEZMR1dgPLcDDef9QMrogy28FdZKXXAUqArSrkcIIYQQQuhYWJjGiy9ovPgCJCZm4/eNsfy1V7F3H8TEwMVLzp+/9gA8WMvmnDmgYgWoVFGjalUoWULaw4u787pi/urVq2m94N+pkAeoVauWFPMupMVfxhSxHuOJ9Rgjd6Mpe9pj9rDqWMu2x1aqlYwNL4QQQgghvFLBgkbat9No305DKcX16xAZdfPHefXdagPbvz8OO2TPDrlyOTvRy50LihV1jhMvxbt4UF5XzNeuXZtjx465OwzvZk3CGPkXxrPbnD/XTtzysD13GWylWmIr2x4VUtBNQQohhBBCCJH5NE0jZ07ImdPZzt15U70Qrud1xXyWYUnEfHAhjlyF0IKLoUKLgmZw/XKUQos9j/HiAQyXDmC8dADDlcNpQ8kBKDQcBapgK9kCW8nmqOyFXB+HEEIIIYQQQog0UszrlOnYKnw3jcQOBALKHIAjT1kcOUviyBaGCglz/g7KgzIHgk8gGIy3z0g5IPkGhqRraDd/bpzDcP00hhjnj2ZJvO1ljmwFsBeuh71IPWyF64D//YdOEEIIIYQQQgjhGlLM65StVEss18/gG30Qx4V/0KxJGKP2YIzac9fXKJO/cwx3ZQe7DRw2NIf1rs9Pe53RjCN3Wez5KuHIXwl7/sqokELSiZ0QQgghhBBCuIkU83rlF4Kl0bsEhoYSc+0qhuunMFw5hOHGebTYSAxxUWixUWjJ19JuiddsyWBLvuPslF8IKiAXKiAHjmxhOHIUwxFaFEeO4qiQwmDyycx3J4QQQgghhBDiHqSY9wYGI45cpXDkKnXnx20WsCaipSag2VJQBhMYTM6BLg1mlF8IGM2ZG7MQQgghhBBCiHSTYj4rMPmAyQflH/qAI1wKIYQQQgghhPBkGdD9uRBCCCGEEEIIITKSFPNCCCGEEEIIIYTOSDEvhBBCCCGEEELojBTzQgghhBBCCCGEzkgxL4QQQgghhBBC6IwU80IIIYQQQgghhM5IMS+EEEIIIYQQQuiMFPNCCCGEEEIIIYTOSDEvhBBCCCGEEELojBTzQgghhBBCCCGEzkgxL4QQQgghhBBC6IwU80IIIYQQQgghhM5oSinl7iCEEEIIIYQQQgjx4OTKvBBCCCGEEEIIoTNSzAshhBBCCCGEEDojxbwQQgghhBBCCKEzUswLIYQQQgghhBA6I8W8EEIIIYQQQgihMyZ3B5AVHThwgAkTJrBv3z5sNhvh4eH06tWLtm3bPvA8LBYLP/zwA8uXL+fixYuEhITQpEkT3nzzTXLmzHnH1yxfvpwZM2Zw8uRJzGYz1apV4/XXX6d8+fKuemte5VHypJRi8+bN/P777+zdu5cLFy5gs9koUqQIbdu25YUXXsDX1/e215UuXfqu8+zYsSMjRox4pPfkjR51e1q8eDGDBw++6+MzZsygdu3aLl9uVvOon1fTpk2Jioq653Nmz55NjRo10v6X7enhLFu2jD179vDPP/9w/PhxrFYrX375JU899dRDzcfhcDB79mwWLFjA2bNnCQgIoF69egwcOJBChQrd8TV//vknkydP5tChQ2iaRvny5XnllVeoW7euK96aV3FFnv766y/Wr1/Prl27iIqKIikpibCwMJo1a0a/fv3Ili3bba+51zZYq1YtZs6cme735I1ckaedO3fy3HPP3fXxu83v9OnTjBs3jh07dpCcnEzRokXp0qULXbt2RdO0dL0fb+WKPPXs2ZNdu3bd8zkjR47kySefTPtftqcHd/nyZVavXs3mzZs5deoUV69eJSQkhGrVqtGnTx8qV678wPPyxuOTFPOZbMeOHfTp0wcfHx8ef/xxAgMDWbduHQMHDuTSpUv07t37vvNwOBz079+fLVu2UKVKFVq2bMnZs2dZuHAh27dvZ8GCBeTIkeOW10yaNIlx48YRFhZGly5dSExMZOXKlXTp0oVp06ZRvXr1jHrLuvSoebJYLPTt2xcfHx9q1apF/fr1sVgsbNmyhbFjx7J+/XpmzpyJv7//ba8NCwujY8eOt00vW7asy96ft3DF9nRTs2bN7vgZh4WFZehyswJXfF7PPfcc8fHxt02PiYlh9uzZhISEULFixdsel+3pwY0fP56oqChCQ0PJkyfPfU+e3M3QoUNZuHAhpUqVomfPnly5coXVq1ezdetW5s+fT9GiRW95/rJly3jvvffIkSNH2hfoVatW8cILLzBu3Dhat279qG/Nq7giT2+88QYxMTFUr16dDh06oGkau3btYurUqaxdu5Z58+aRK1eu214XHBzM888/f9v0O+0nszpXbU/gLO5q1ap12/Q77cdOnjxJly5dSElJoU2bNuTJk4dNmzYxbNgwIiIiGDJkSLrj8EauyFPHjh3vmB+bzcbkyZMxGAx3LPxke3owM2fOZMqUKRQuXJjHHnuMHDlycPbsWdavX8/69ev5+uuvH/jCgFcen5TINFarVTVv3lxVqFBBHT58OG16XFycatmypSpfvryKjIy873wWLVqkwsPD1VtvvaUcDkfa9Dlz5qjw8HA1ZMiQW55/+vRpVa5cOdWyZUsVFxeXNv3w4cOqQoUKqk2bNsput7vgHXoHV+TJYrGo7777Tt24ceO26f369VPh4eFqypQpt70uPDxc9ejRwzVvxMu5anv65ZdfVHh4uPrll18ydblZRUZ/Xj/++KMKDw9Xn3766W2Pyfb0cLZu3ZqWi8mTJz/UdnHT9u3bVXh4uOrevbtKTU1Nm/7HH3+o8PBw1bt371uef+PGDVWjRg1Vu3ZtdfHixbTpFy9eVLVr11a1a9dW8fHxj/CuvI8r8jR58mR16dKlW6Y5HA718ccfq/DwcPXJJ5/c9pomTZqoJk2apD/wLMYVedqxY4cKDw9X33zzzQO/pnv37io8PFz98ccfadNSU1NVt27dVHh4uNq7d+9DxeDtXJGnu1mzZo0KDw9X/fr1u+0x2Z4e3Nq1a9XOnTtvm757925Vvnx5VbNmzVuON3fjrccnaTOfiXbs2MG5c+do167dLWdTg4ODefnll7FarSxZsuS+81m4cCEAb7311i23S3Xp0oVChQrx66+/kpKSkjZ98eLF2Gw2+vfvT3BwcNr0smXL0q5dOyIiItizZ48r3qJXcEWezGYz/fv3JyQk5Lbp/fr1A2D37t2uDz4LcdX2pJfl6lVGf16LFi0C4JlnnnnkWLO6evXqPfIVoZvHpzfeeAMfH5+06Y0aNaJWrVps2bKFCxcupE1fs2YNcXFx9OjRg3z58qVNz5cvHz169CAmJob169c/UkzexhV56tu3L3nz5r1lmqZpvPLKK4Acn1zBFXl6WKdPn2b37t3Url2bRo0apU338fHhjTfeAGDBggWZGpOny8g8yfHJNVq2bHnHOx9q1KhB7dq1iY2N5dixY/edj7cen6SYz0Q329PUr1//tsduTrvfATQ1NZW///6bYsWK3bbz0TSNevXqkZSUxD///HPbch977LG7Lvd+bX2yElfk6V5MJmfrFqPReMfH4+LimD9/Pt9//z1z5859oB1UVuTqPB0+fJiffvqJH374gVWrVhETE5Mpy/V2Gfl57d27l4iICCpUqECZMmXu+BzZnjLXzp07CQgIoFq1arc91qBBA+DW482DrB9yfMo89zs+WSwWFi9ezPfff8+sWbP4+++/MzO8LOvMmTNMmzaNyZMns3TpUi5fvnzH591re6pevToBAQFyfMokly5dYsuWLeTOnZvGjRvf8TmyPT26m/usm7/vxVuPT9JmPhOdOXMGgCJFitz2WO7cuQkICODs2bP3nMe5c+dwOBy3tem46eb0M2fOpHUEdebMGQICAsidO/dtz78Zy/2Wm5W4Ik/38ssvvwB3PrkCcPToUYYOHXrLtAYNGjBy5Mi7dm6YFbk6T/+/sxk/Pz9effVV+vbtm6HL9XYZ+XndvOrx7LPP3vU5sj1lnqSkJKKjowkPD79jMXin48291g85PmW++x2foqOjb+swtGLFiowZM4bChQtneHxZ1YoVK1ixYkXa/yaTiR49evDee+/dsq3da3syGo0ULFiQkydPYrPZHqj4Een3yy+/4HA46Nix410/a9meHs2FCxfYtm0buXPnJjw8/J7P9ebjk2zJmSghIQHgllvd/ysoKOiOHTz9183Hg4KC7jqP/y7r5t//v0O8///8+y03K3FFnu5m06ZNzJ8/nxIlStyxAOnduzctW7akaNGimM1mTpw4wXfffcfmzZvp168f8+fPv+sVk6zGVXkqWLAgQ4YMoX79+uTLl4/Y2Fi2b9/OmDFj+Prrr/H396dnz54uX25WkVGfV2JiIqtXr8bf35927drd8TmyPWWuBz0+/Tff91o/5PiUuY4cOcK3335Lzpw56dOnz22PP/XUU1SvXp3w8HACAgI4c+YMP//8M8uWLaNXr14sX778rrkX6ZMjRw7efvttmjRpQlhYGMnJyezbt4+vv/6aadOmoWkagwYNSnv+/fa3gYGBOBwOEhMTb2sGKFxHKcXixYuBu99iL9vTo7Farbz33ntYLBbeeeed+x7Lvfn4JLfZC5FJDhw4wMCBAwkODmb8+PG3tNe56f3336dq1aqEhoYSFBRE1apVmTx5MrVq1eLgwYNs2LDBDZF7t1q1atGjRw+KFi2Kn58fefPm5cknn+THH3/E19eXiRMnYrPZ3B2m+H9WrVpFUlISrVu3vuvBWbYnIR7M+fPn6du3L3a7nTFjxtzxAsBrr71G3bp1yZkzJ/7+/pQtW5ZRo0bRoUMHoqKi0tqjCtcpVaoUffv2pVSpUgQEBJAzZ06aN2/OjBkzyJEjBzNnzuTatWvuDlP8Pzt27CAyMpJatWrd8aouyPb0KBwOB4MGDWL37t106tTpliH/siIp5jPR/c7iJCQk3PVs6k03H//vlff/P4//Luvm3/da5n/nK1yTp//v4MGDvPjiixgMBqZOnUqpUqUe+LUGgyHtKv7evXsfarneLCPy9F+lSpWievXq3Lhxg4iIiExbrrfJqM/r5u3AD9uxkGxPGedBj0//zfe91g85PmWO8+fP89xzzxETE8M333xDnTp1Hur1nTt3BmR7yky5c+emWbNm2Gy2W9pZ329/m5iYiKZpBAYGZkqcWdWjdHwn29O9ORwOPvjgA1asWMETTzzBsGHDHuh13nx8kmI+E91sz36n9hXR0dEkJSXd9QzeTYUKFcJgMKS14/j/bk7/b5v6okWLprUV+f9uxnK/5WYlrsjTfx08eJDevXvjcDj48ccfqVSp0kPHFBoaCjjb/AgnV+fpTm5+7snJyZm6XG+SEZ/XyZMn2bdvH8WLF0/rG+RhyPaUMW72zRIZGYndbr/t8Tsdb+61fsjxKePdLOSjo6MZN24cTZo0eeh5yPbkHg97fLLb7URGRlKwYEFpL5+BYmNj+e2338iWLVu6xiCX7enuHA4HgwcPZsmSJbRr144RI0ZgMDxYKevNxycp5jNRzZo1AdiyZcttj92cdvM5d+Pn50elSpU4ffo0UVFRtzymlGLbtm0EBARQoUKF25a7devWuy73TkM+ZFWuyNNNNwt5u93O1KlTqVy5crpiunnmvWDBgul6vTdyZZ7uxG63p40KUaBAgUxbrrfJiM/rUYf7ke0p49SqVYukpKQ7XlX6888/gVvz/SDrhxyfMsZ/C/mxY8fSvHnzdM3nwIEDAJk+DFtWd3M/9t/P/V7b0549e0hKSpLjUwZbvnw5qamptG/fHl9f34d+vWxPd3azkF+6dClt27Zl1KhRD93njbcen6SYz0R169alUKFCrFixgiNHjqRNj4+P5/vvv8dsNt/S7uPKlStERETcdntHp06dABgzZgxKqbTp8+bN4/z587Rv3x4/P7+06U899RQmk4lJkybdMq8jR46wYsUKSpQoQfXq1V39dnXLVXn6559/6N27NzabjSlTplC1atV7LvfYsWNYrdbbpu/du5epU6diNpvTdZbXW7kyT/+f3W5n9OjRnD17ltq1a5MnT550Lzerc1WebrJarSxbtuy+n7NsTxnr+vXrREREcP369Vum3zw+jR8/HovFkjZ906ZN7Nq1i/r169/yJbVNmzYEBwcza9YsLl26lDb90qVLzJo1i9DQ0HQXmeLuebpZyF+5coUxY8bQokWLe84nIiLilivA/50+evRoANq3b++6wLOYu+XpTscngOnTp7Nz506KFi1KxYoV06YXL16cmjVrsnPnTjZt2pQ23WKxMH78eODeo3+Ie7tbnv7rQU42y/b0cG7eWr906VJat27NV199dc9CPqsdnzT132pQZLgdO3bQp08ffHx8ePzxxwkMDGTdunVERUXx/vvv07t377TnDho0iCVLlvDll1/y1FNPpU13OBy89NJLbNmyhSpVqlCzZk3OnTvHunXrCAsLY+HChbd1XjNp0iTGjRtHWFgYLVu2JDExkZUrV2K1Wpk2bZoU8//Po+bpxo0btGzZktjYWBo0aHDHK/LBwcH06tXrlvn88ccfVK9enfz582MymThx4gRbt25F0zSGDh1K165dM/y964krtqfSpUun/eTNm5fY2Fh27drFmTNnyJcvH7NmzaJQoULpXq5wTZ5uWrt2La+//jotW7ZkwoQJd12mbE8Pb+HChezZsweA48ePc+jQIapVq5Z2G2H16tXTCoEJEyYwceJEXnvtNQYMGHDLfD766CMWLlxIqVKlaNSoEdHR0axatYrAwEDmzZtHsWLFbnn+smXLeO+998iRIwdt27YFnB0cxsTEMHbsWNq0aZPRb11XXJGnpk2bEhUVRZUqVe44hjJwy/MnTJjAzz//TM2aNSlQoAD+/v6cOXOGzZs3Y7Va6devH2+99VZGvWVdclWeTCYTFSpUIG/evCQnJ/P3339z+PBhsmXLdsemeydOnKBr166kpKTQtm1bcufOzaZNmzhx4gQ9evRgyJAhmfQJ6IOr9nvgPPny9NNPU758+bTe7O9EtqeHc/NzDwgI4LnnnrtjM5HmzZtTtmzZW56fVY5P0mgmk9WpU4c5c+bwzTffsGrVKmw2G+Hh4bzzzjtpK8n9GAwGJk2axA8//MCyZcuYNm0a2bNn55lnnuHNN9+8Yy+0/fv3JywsjOnTpzN37lzMZjM1atTgjTfeoHz58q5+m7r3qHlKSEggNjYWcN66c/P2nf8KCwu7pZhv1qwZcXFxHD16lG3btmG1WsmVKxePP/44zz//fLra2ns7V2xPvXv3Zv/+/Wzbto3Y2FjMZjOFCxemf//+vPDCC3ccvscVy81KXPl5Pegt9rI9Pbw9e/awZMmSW6bt3bv3llsSH+Sq3vDhwwkPD2fBggXMmDGDgIAAWrRowcCBA+84dnKHDh0IDQ1l8uTJaV+AK1SoQP/+/alXr94jvivv44o83Wymt3//fvbv33/H5/z3S3Dt2rWJiIjgyJEj/PXXX6SkpBAaGkrDhg3p1q3bXU8IZGWuyFOXLl3YsmULu3fv5saNGxgMBgoUKMDzzz9P7969yZcv322vKVWqFAsWLGDcuHFs2rSJpKQkihYtytChQ+nWrZtr3pwXcdV+Dx78+CTb08O5ub9KSkri+++/v+NzwsLC0or5e/HG45NcmRdCCCGEEEIIIXRG2swLIYQQQgghhBA6I8W8EEIIIYQQQgihM1LMCyGEEEIIIYQQOiPFvBBCCCGEEEIIoTNSzAshhBBCCCGEEDojxbwQQgghhBBCCKEzUswLIYQQQgghhBA6I8W8EEIIIYQQQgihM1LMCyGEEEIIIYQQOiPFvBBCCCHSbenSpZQuXZr27dtjtVrv+Jz9+/dTtmxZateuzfXr1zM5QiGEEMI7STEvhBBCiHR78sknqVevHsePH2fq1Km3PW61WhkyZAgOh4NBgwaRI0cON0QphBBCeB8p5oUQQgjxSIYPH46fnx+TJk3izJkztzw2ZcoUjh8/Tr169ejYsaN7AhRCCCG8kBTzQgghhHgkhQoVYsCAAaSmpjJkyJC06adOnWLSpEn4+fkxbNgwN0YohBBCeB8p5oUQQgjxyHr16kW5cuXYtWsXCxcuRCnF0KFDsVgsvPbaaxQuXNjdIQohhBBeRVNKKXcHIYQQQgj9++eff+jUqRNBQUE8//zzfPPNN5QtW5ZFixZhMpncHZ4QQgjhVaSYF0IIIYTLjBw5kp9++gkAo9HI/PnzqVixopujEkIIIbyP3GYvhBBCCJfp1asXmqYBzp7upZAXQgghMoYU80IIIYRwmQkTJnDzpr8tW7aQkJDg5oiEEEII7yTFvBBCCCFcYvfu3SxatIjcuXPTvHlzLl++zLhx49wdlhBCCOGVpM28EEIIIR6ZxWLhiSee4PTp03zzzTdUr16dtm3bEh8fz/z586lUqZK7QxRCCCG8ilyZF0IIIcQj++677zh9+jRNmzalVatW5MqVi3fffReHw8GQIUOw2WzuDlEIIYTwKlLMCyGEEOKRHD9+nKlTpxIYGMjHH3+cNv2ZZ56hRo0aHD16lGnTprkvQCGEEMILSTEvhBBCiHS7eeXdarUycOBA8uXLl/aYpmkMHz4cs9nMxIkTiYyMdGOkQgghhHeRYl4IIYQQ6TZnzhz2799P5cqV6d69+22PlyhRgr59+5KcnMywYcPcEKEQQgjhnaQDPCGEEEKky6VLl2jbti2pqaksXryY0qVL3/F5FouF9u3bc+bMGcaOHUvbtm0zOVIhhBDC+0gxL4QQQgghhBBC6IzcZi+EEEIIIYQQQuiMFPNCCCGEEEIIIYTOSDEvhBBCCCGEEELojBTzQgghhBBCCCGEzkgxL4QQQgghhBBC6IwU80IIIYQQQgghhM5IMS+EEEIIIYQQQuiMFPNCCCGEEEIIIYTOSDEvhBBCCCGEEELojBTzQgghhBBCCCGEzkgxL4QQQgghhBBC6IwU80IIIYQQQgghhM78H8hHHA/dKkCRAAAAAElFTkSuQmCC\n", "text/plain": [ "