pymc.DEMetropolis#
- class pymc.DEMetropolis(*args, **kwargs)[source]#
Differential Evolution Metropolis sampling step.
- Parameters
- lamb: float
Lambda parameter of the DE proposal mechanism. Defaults to 2.38 / sqrt(2 * ndim)
- vars: list
List of variables for sampler
- S: standard deviation or covariance matrix
Some measure of variance to parameterize proposal distribution
- proposal_dist: function
Function that returns zero-mean deviates when parameterized with S (and n). Defaults to Uniform(-S,+S).
- scaling: scalar or array
Initial scale factor for epsilon. Defaults to 0.001
- tune: str
Which hyperparameter to tune. Defaults to None, but can also be ‘scaling’ or ‘lambda’.
- tune_interval: int
The frequency of tuning. Defaults to 100 iterations.
- model: PyMC Model
Optional model for sampling step. Defaults to None (taken from context).
- mode: string or `Mode` instance.
compilation mode passed to PyTensor functions
References
- Braak2006
Cajo C.F. ter Braak (2006). A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces. Statistics and Computing link
Methods
DEMetropolis.__init__
([vars, S, ...])- Parameters
Perform a single sample step in a raveled and concatenated parameter space.
DEMetropolis.competence
(var, has_grad)DEMetropolis.link_population
(population, ...)Links the sampler to the population.
DEMetropolis.step
(point)Perform a single step of the sampler.
Attributes
default_blocked
name
stats_dtypes
vars