pymc.Exponential#
- class pymc.Exponential(name, *args, rng=None, dims=None, initval=None, observed=None, total_size=None, transform=UNSET, **kwargs)[source]#
Exponential log-likelihood.
The pdf of this distribution is
\[f(x \mid \lambda) = \lambda \exp\left\{ -\lambda x \right\}\](Source code, png, hires.png, pdf)
Support
\(x \in [0, \infty)\)
Mean
\(\dfrac{1}{\lambda}\)
Variance
\(\dfrac{1}{\lambda^2}\)
- Parameters
- lamtensor_like of
float
Rate or inverse scale (
lam
> 0).
- lamtensor_like of
Methods
Exponential.__init__
(*args, **kwargs)Exponential.dist
(lam, *args, **kwargs)Creates a tensor variable corresponding to the cls distribution.
Exponential.logp
(mu)Exponential.moment
(size, mu)Attributes
rv_op