pymc.ChiSquared#
- class pymc.ChiSquared(name, *args, rng=None, dims=None, initval=None, observed=None, total_size=None, transform=UNSET, **kwargs)[source]#
\(\chi^2\) log-likelihood.
The pdf of this distribution is
\[f(x \mid \nu) = \frac{x^{(\nu-2)/2}e^{-x/2}}{2^{\nu/2}\Gamma(\nu/2)}\](Source code, png, hires.png, pdf)
Support
\(x \in [0, \infty)\)
Mean
\(\nu\)
Variance
\(2 \nu\)
- Parameters
- nutensor_like of
float
Degrees of freedom (nu > 0).
- nutensor_like of
Methods
ChiSquared.__init__
(*args, **kwargs)ChiSquared.dist
(nu, *args, **kwargs)Creates a tensor variable corresponding to the cls distribution.
ChiSquared.logp
(nu)ChiSquared.moment
(size, nu)Attributes
rv_op