# Copyright 2024 The PyMC Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Functions for MCMC sampling."""
import contextlib
import logging
import pickle
import sys
import time
import warnings
from collections.abc import Callable, Iterator, Mapping, Sequence
from typing import (
Any,
Literal,
TypeAlias,
overload,
)
import numpy as np
import pytensor.gradient as tg
from arviz import InferenceData, dict_to_dataset
from arviz.data.base import make_attrs
from pytensor.graph.basic import Variable
from rich.console import Console
from rich.progress import BarColumn, TextColumn, TimeElapsedColumn, TimeRemainingColumn
from rich.theme import Theme
from threadpoolctl import threadpool_limits
from typing_extensions import Protocol
import pymc as pm
from pymc.backends import RunType, TraceOrBackend, init_traces
from pymc.backends.arviz import (
coords_and_dims_for_inferencedata,
find_constants,
find_observations,
)
from pymc.backends.base import IBaseTrace, MultiTrace, _choose_chains
from pymc.blocking import DictToArrayBijection
from pymc.exceptions import SamplingError
from pymc.initial_point import PointType, StartDict, make_initial_point_fns_per_chain
from pymc.model import Model, modelcontext
from pymc.sampling.parallel import Draw, _cpu_count
from pymc.sampling.population import _sample_population
from pymc.stats.convergence import (
log_warning_stats,
log_warnings,
run_convergence_checks,
)
from pymc.step_methods import NUTS, CompoundStep
from pymc.step_methods.arraystep import BlockedStep, PopulationArrayStepShared
from pymc.step_methods.hmc import quadpotential
from pymc.util import (
CustomProgress,
RandomSeed,
RandomState,
_get_seeds_per_chain,
default_progress_theme,
drop_warning_stat,
get_untransformed_name,
is_transformed_name,
)
from pymc.vartypes import discrete_types
sys.setrecursionlimit(10000)
__all__ = [
"sample",
"init_nuts",
]
Step: TypeAlias = BlockedStep | CompoundStep
class SamplingIteratorCallback(Protocol):
"""Signature of the callable that may be passed to `pm.sample(callable=...)`."""
def __call__(self, trace: IBaseTrace, draw: Draw):
pass
_log = logging.getLogger(__name__)
def instantiate_steppers(
model: Model,
steps: list[Step],
selected_steps: Mapping[type[BlockedStep], list[Any]],
step_kwargs: dict[str, dict] | None = None,
) -> Step | list[Step]:
"""Instantiate steppers assigned to the model variables.
This function is intended to be called automatically from ``sample()``, but
may be called manually.
Parameters
----------
model : Model object
A fully-specified model object.
steps : list, array_like of shape (selected_steps, )
A list of zero or more step function instances that have been assigned to some subset of
the model's parameters.
selected_steps : dict
A dictionary that maps a step method class to a list of zero or more model variables.
step_kwargs : dict, default=None
Parameters for the samplers. Keys are the lower case names of
the step method, values a dict of arguments. Defaults to None.
Returns
-------
methods : list or step
List of step methods associated with the model's variables, or step method
if there is only one.
"""
if step_kwargs is None:
step_kwargs = {}
used_keys = set()
for step_class, vars in selected_steps.items():
if vars:
name = getattr(step_class, "name")
args = step_kwargs.get(name, {})
used_keys.add(name)
step = step_class(vars=vars, model=model, **args)
steps.append(step)
unused_args = set(step_kwargs).difference(used_keys)
if unused_args:
s = "s" if len(unused_args) > 1 else ""
example_arg = sorted(unused_args)[0]
example_step = (list(selected_steps.keys()) or pm.STEP_METHODS)[0]
example_step_name = getattr(example_step, "name")
raise ValueError(
f"Invalid key{s} found in step_kwargs: {unused_args}. "
"Keys must be step names and values valid kwargs for that stepper. "
f'Did you mean {{"{example_step_name}": {{"{example_arg}": ...}}}}?'
)
if len(steps) == 1:
return steps[0]
return steps
def assign_step_methods(
model: Model,
step: Step | Sequence[Step] | None = None,
methods: Sequence[type[BlockedStep]] | None = None,
step_kwargs: dict[str, Any] | None = None,
) -> Step | list[Step]:
"""Assign model variables to appropriate step methods.
Passing a specified model will auto-assign its constituent stochastic
variables to step methods based on the characteristics of the variables.
This function is intended to be called automatically from ``sample()``, but
may be called manually. Each step method passed should have a
``competence()`` method that returns an ordinal competence value
corresponding to the variable passed to it. This value quantifies the
appropriateness of the step method for sampling the variable.
Parameters
----------
model : Model object
A fully-specified model object.
step : step function or iterable of step functions, optional
One or more step functions that have been assigned to some subset of
the model's parameters. Defaults to ``None`` (no assigned variables).
methods : iterable of step method classes, optional
The set of step methods from which the function may choose. Defaults
to the main step methods provided by PyMC.
step_kwargs : dict, optional
Parameters for the samplers. Keys are the lower case names of
the step method, values a dict of arguments.
Returns
-------
methods : list
List of step methods associated with the model's variables.
"""
steps: list[Step] = []
assigned_vars: set[Variable] = set()
if step is not None:
if isinstance(step, BlockedStep | CompoundStep):
steps.append(step)
else:
steps.extend(step)
for step in steps:
for var in step.vars:
if var not in model.value_vars:
raise ValueError(
f"{var} assigned to {step} sampler is not a value variable in the model. "
"You can use `util.get_value_vars_from_user_vars` to parse user provided variables."
)
assigned_vars = assigned_vars.union(set(step.vars))
# Use competence classmethods to select step methods for remaining
# variables
methods_list: list[type[BlockedStep]] = list(methods or pm.STEP_METHODS)
selected_steps: dict[type[BlockedStep], list] = {}
model_logp = model.logp()
for var in model.value_vars:
if var not in assigned_vars:
# determine if a gradient can be computed
has_gradient = getattr(var, "dtype") not in discrete_types
if has_gradient:
try:
tg.grad(model_logp, var) # type: ignore
except (NotImplementedError, tg.NullTypeGradError):
has_gradient = False
# select the best method
rv_var = model.values_to_rvs[var]
selected = max(
methods_list,
key=lambda method, var=rv_var, has_gradient=has_gradient: method._competence( # type: ignore
var, has_gradient
),
)
selected_steps.setdefault(selected, []).append(var)
return instantiate_steppers(model, steps, selected_steps, step_kwargs)
def _print_step_hierarchy(s: Step, level: int = 0) -> None:
if isinstance(s, CompoundStep):
_log.info(">" * level + "CompoundStep")
for i in s.methods:
_print_step_hierarchy(i, level + 1)
else:
varnames = ", ".join(
[
get_untransformed_name(v.name) if is_transformed_name(v.name) else v.name
for v in s.vars
]
)
_log.info(">" * level + f"{s.__class__.__name__}: [{varnames}]")
def all_continuous(vars):
"""Check that vars not include discrete variables"""
if any([(var.dtype in discrete_types) for var in vars]):
return False
else:
return True
def _sample_external_nuts(
sampler: Literal["nutpie", "numpyro", "blackjax"],
draws: int,
tune: int,
chains: int,
target_accept: float,
random_seed: RandomState | None,
initvals: StartDict | Sequence[StartDict | None] | None,
model: Model,
var_names: Sequence[str] | None,
progressbar: bool,
idata_kwargs: dict | None,
compute_convergence_checks: bool,
nuts_sampler_kwargs: dict | None,
**kwargs,
):
if nuts_sampler_kwargs is None:
nuts_sampler_kwargs = {}
if sampler == "nutpie":
try:
import nutpie
except ImportError as err:
raise ImportError(
"nutpie not found. Install it with conda install -c conda-forge nutpie"
) from err
if initvals is not None:
warnings.warn(
"`initvals` are currently not passed to nutpie sampler. "
"Use `init_mean` kwarg following nutpie specification instead.",
UserWarning,
)
if idata_kwargs is not None:
warnings.warn(
"`idata_kwargs` are currently ignored by the nutpie sampler",
UserWarning,
)
if var_names is not None:
warnings.warn(
"`var_names` are currently ignored by the nutpie sampler",
UserWarning,
)
compiled_model = nutpie.compile_pymc_model(model)
t_start = time.time()
idata = nutpie.sample(
compiled_model,
draws=draws,
tune=tune,
chains=chains,
target_accept=target_accept,
seed=_get_seeds_per_chain(random_seed, 1)[0],
progress_bar=progressbar,
**nuts_sampler_kwargs,
)
t_sample = time.time() - t_start
# Temporary work-around. Revert once https://github.com/pymc-devs/nutpie/issues/74 is fixed
# gather observed and constant data as nutpie.sample() has no access to the PyMC model
coords, dims = coords_and_dims_for_inferencedata(model)
constant_data = dict_to_dataset(
find_constants(model),
library=pm,
coords=coords,
dims=dims,
default_dims=[],
)
observed_data = dict_to_dataset(
find_observations(model),
library=pm,
coords=coords,
dims=dims,
default_dims=[],
)
attrs = make_attrs(
{
"sampling_time": t_sample,
"tuning_steps": tune,
},
library=nutpie,
)
for k, v in attrs.items():
idata.posterior.attrs[k] = v
idata.add_groups(
{"constant_data": constant_data, "observed_data": observed_data},
coords=coords,
dims=dims,
)
return idata
elif sampler in ("numpyro", "blackjax"):
import pymc.sampling.jax as pymc_jax
idata = pymc_jax.sample_jax_nuts(
draws=draws,
tune=tune,
chains=chains,
target_accept=target_accept,
random_seed=random_seed,
initvals=initvals,
model=model,
var_names=var_names,
progressbar=progressbar,
nuts_sampler=sampler,
idata_kwargs=idata_kwargs,
compute_convergence_checks=compute_convergence_checks,
**nuts_sampler_kwargs,
)
return idata
else:
raise ValueError(
f"Sampler {sampler} not found. Choose one of ['nutpie', 'numpyro', 'blackjax', 'pymc']."
)
@overload
def sample(
draws: int = 1000,
*,
tune: int = 1000,
chains: int | None = None,
cores: int | None = None,
random_seed: RandomState = None,
progressbar: bool = True,
progressbar_theme: Theme | None = default_progress_theme,
step=None,
var_names: Sequence[str] | None = None,
nuts_sampler: Literal["pymc", "nutpie", "numpyro", "blackjax"] = "pymc",
initvals: StartDict | Sequence[StartDict | None] | None = None,
init: str = "auto",
jitter_max_retries: int = 10,
n_init: int = 200_000,
trace: TraceOrBackend | None = None,
discard_tuned_samples: bool = True,
compute_convergence_checks: bool = True,
keep_warning_stat: bool = False,
return_inferencedata: Literal[True] = True,
idata_kwargs: dict[str, Any] | None = None,
nuts_sampler_kwargs: dict[str, Any] | None = None,
callback=None,
mp_ctx=None,
blas_cores: int | None | Literal["auto"] = "auto",
**kwargs,
) -> InferenceData: ...
@overload
def sample(
draws: int = 1000,
*,
tune: int = 1000,
chains: int | None = None,
cores: int | None = None,
random_seed: RandomState = None,
progressbar: bool = True,
progressbar_theme: Theme | None = default_progress_theme,
step=None,
var_names: Sequence[str] | None = None,
nuts_sampler: Literal["pymc", "nutpie", "numpyro", "blackjax"] = "pymc",
initvals: StartDict | Sequence[StartDict | None] | None = None,
init: str = "auto",
jitter_max_retries: int = 10,
n_init: int = 200_000,
trace: TraceOrBackend | None = None,
discard_tuned_samples: bool = True,
compute_convergence_checks: bool = True,
keep_warning_stat: bool = False,
return_inferencedata: Literal[False],
idata_kwargs: dict[str, Any] | None = None,
nuts_sampler_kwargs: dict[str, Any] | None = None,
callback=None,
mp_ctx=None,
model: Model | None = None,
blas_cores: int | None | Literal["auto"] = "auto",
**kwargs,
) -> MultiTrace: ...
[docs]
def sample(
draws: int = 1000,
*,
tune: int = 1000,
chains: int | None = None,
cores: int | None = None,
random_seed: RandomState = None,
progressbar: bool = True,
progressbar_theme: Theme | None = default_progress_theme,
step=None,
var_names: Sequence[str] | None = None,
nuts_sampler: Literal["pymc", "nutpie", "numpyro", "blackjax"] = "pymc",
initvals: StartDict | Sequence[StartDict | None] | None = None,
init: str = "auto",
jitter_max_retries: int = 10,
n_init: int = 200_000,
trace: TraceOrBackend | None = None,
discard_tuned_samples: bool = True,
compute_convergence_checks: bool = True,
keep_warning_stat: bool = False,
return_inferencedata: bool = True,
idata_kwargs: dict[str, Any] | None = None,
nuts_sampler_kwargs: dict[str, Any] | None = None,
callback=None,
mp_ctx=None,
blas_cores: int | None | Literal["auto"] = "auto",
model: Model | None = None,
**kwargs,
) -> InferenceData | MultiTrace:
r"""Draw samples from the posterior using the given step methods.
Multiple step methods are supported via compound step methods.
Parameters
----------
draws : int
The number of samples to draw. Defaults to 1000. The number of tuned samples are discarded
by default. See ``discard_tuned_samples``.
tune : int
Number of iterations to tune, defaults to 1000. Samplers adjust the step sizes, scalings or
similar during tuning. Tuning samples will be drawn in addition to the number specified in
the ``draws`` argument, and will be discarded unless ``discard_tuned_samples`` is set to
False.
chains : int
The number of chains to sample. Running independent chains is important for some
convergence statistics and can also reveal multiple modes in the posterior. If ``None``,
then set to either ``cores`` or 2, whichever is larger.
cores : int
The number of chains to run in parallel. If ``None``, set to the number of CPUs in the
system, but at most 4.
random_seed : int, array-like of int, RandomState or Generator, optional
Random seed(s) used by the sampling steps. If a list, tuple or array of ints
is passed, each entry will be used to seed each chain. A ValueError will be
raised if the length does not match the number of chains.
progressbar : bool, optional default=True
Whether or not to display a progress bar in the command line. The bar shows the percentage
of completion, the sampling speed in samples per second (SPS), and the estimated remaining
time until completion ("expected time of arrival"; ETA).
Only applicable to the pymc nuts sampler.
step : function or iterable of functions
A step function or collection of functions. If there are variables without step methods,
step methods for those variables will be assigned automatically. By default the NUTS step
method will be used, if appropriate to the model.
var_names : list of str, optional
Names of variables to be stored in the trace. Defaults to all free variables and deterministics.
nuts_sampler : str
Which NUTS implementation to run. One of ["pymc", "nutpie", "blackjax", "numpyro"].
This requires the chosen sampler to be installed.
All samplers, except "pymc", require the full model to be continuous.
blas_cores: int or "auto" or None, default = "auto"
The total number of threads blas and openmp functions should use during sampling.
Setting it to "auto" will ensure that the total number of active blas threads is the
same as the `cores` argument. If set to an integer, the sampler will try to use that total
number of blas threads. If `blas_cores` is not divisible by `cores`, it might get rounded
down. If set to None, this will keep the default behavior of whatever blas implementation
is used at runtime.
initvals : optional, dict, array of dict
Dict or list of dicts with initial value strategies to use instead of the defaults from
`Model.initial_values`. The keys should be names of transformed random variables.
Initialization methods for NUTS (see ``init`` keyword) can overwrite the default.
init : str
Initialization method to use for auto-assigned NUTS samplers. See `pm.init_nuts` for a list
of all options. This argument is ignored when manually passing the NUTS step method.
Only applicable to the pymc nuts sampler.
jitter_max_retries : int
Maximum number of repeated attempts (per chain) at creating an initial matrix with uniform
jitter that yields a finite probability. This applies to ``jitter+adapt_diag`` and
``jitter+adapt_full`` init methods.
n_init : int
Number of iterations of initializer. Only works for 'ADVI' init methods.
trace : backend, optional
A backend instance or None.
If None, the NDArray backend is used.
discard_tuned_samples : bool
Whether to discard posterior samples of the tune interval.
compute_convergence_checks : bool, default=True
Whether to compute sampler statistics like Gelman-Rubin and ``effective_n``.
keep_warning_stat : bool
If ``True`` the "warning" stat emitted by, for example, HMC samplers will be kept
in the returned ``idata.sample_stats`` group.
This leads to the ``idata`` not supporting ``.to_netcdf()`` or ``.to_zarr()`` and
should only be set to ``True`` if you intend to use the "warning" objects right away.
Defaults to ``False`` such that ``pm.drop_warning_stat`` is applied automatically,
making the ``InferenceData`` compatible with saving.
return_inferencedata : bool
Whether to return the trace as an :class:`arviz:arviz.InferenceData` (True) object or a
`MultiTrace` (False). Defaults to `True`.
idata_kwargs : dict, optional
Keyword arguments for :func:`pymc.to_inference_data`
nuts_sampler_kwargs : dict, optional
Keyword arguments for the sampling library that implements nuts.
Only used when an external sampler is specified via the `nuts_sampler` kwarg.
callback : function, default=None
A function which gets called for every sample from the trace of a chain. The function is
called with the trace and the current draw and will contain all samples for a single trace.
the ``draw.chain`` argument can be used to determine which of the active chains the sample
is drawn from.
Sampling can be interrupted by throwing a ``KeyboardInterrupt`` in the callback.
mp_ctx : multiprocessing.context.BaseContent
A multiprocessing context for parallel sampling.
See multiprocessing documentation for details.
model : Model (optional if in ``with`` context)
Model to sample from. The model needs to have free random variables.
Returns
-------
trace : pymc.backends.base.MultiTrace or arviz.InferenceData
A ``MultiTrace`` or ArviZ ``InferenceData`` object that contains the samples.
Notes
-----
Optional keyword arguments can be passed to ``sample`` to be delivered to the
``step_method``\ s used during sampling.
For example:
1. ``target_accept`` to NUTS: nuts={'target_accept':0.9}
2. ``transit_p`` to BinaryGibbsMetropolis: binary_gibbs_metropolis={'transit_p':.7}
Note that available step names are:
``nuts``, ``hmc``, ``metropolis``, ``binary_metropolis``,
``binary_gibbs_metropolis``, ``categorical_gibbs_metropolis``,
``DEMetropolis``, ``DEMetropolisZ``, ``slice``
The NUTS step method has several options including:
* target_accept : float in [0, 1]. The step size is tuned such that we
approximate this acceptance rate. Higher values like 0.9 or 0.95 often
work better for problematic posteriors. This argument can be passed directly to sample.
* max_treedepth : The maximum depth of the trajectory tree
* step_scale : float, default 0.25
The initial guess for the step size scaled down by :math:`1/n**(1/4)`,
where n is the dimensionality of the parameter space
Alternatively, if you manually declare the ``step_method``\ s, within the ``step``
kwarg, then you can address the ``step_method`` kwargs directly.
e.g. for a CompoundStep comprising NUTS and BinaryGibbsMetropolis,
you could send ::
step=[pm.NUTS([freeRV1, freeRV2], target_accept=0.9),
pm.BinaryGibbsMetropolis([freeRV3], transit_p=.7)]
You can find a full list of arguments in the docstring of the step methods.
Examples
--------
.. code:: ipython
In [1]: import pymc as pm
...: n = 100
...: h = 61
...: alpha = 2
...: beta = 2
In [2]: with pm.Model() as model: # context management
...: p = pm.Beta("p", alpha=alpha, beta=beta)
...: y = pm.Binomial("y", n=n, p=p, observed=h)
...: idata = pm.sample()
In [3]: az.summary(idata, kind="stats")
Out[3]:
mean sd hdi_3% hdi_97%
p 0.609 0.047 0.528 0.699
"""
if "start" in kwargs:
if initvals is not None:
raise ValueError("Passing both `start` and `initvals` is not supported.")
warnings.warn(
"The `start` kwarg was renamed to `initvals` and can now do more. Please check the docstring.",
FutureWarning,
stacklevel=2,
)
initvals = kwargs.pop("start")
if nuts_sampler_kwargs is None:
nuts_sampler_kwargs = {}
if "target_accept" in kwargs:
if "nuts" in kwargs and "target_accept" in kwargs["nuts"]:
raise ValueError(
"`target_accept` was defined twice. Please specify it either as a direct keyword argument or in the `nuts` kwarg."
)
if "nuts" in kwargs:
kwargs["nuts"]["target_accept"] = kwargs.pop("target_accept")
else:
kwargs["nuts"] = {"target_accept": kwargs.pop("target_accept")}
if isinstance(trace, list):
raise ValueError("Please use `var_names` keyword argument for partial traces.")
model = modelcontext(model)
if not model.free_RVs:
raise SamplingError(
"Cannot sample from the model, since the model does not contain any free variables."
)
if cores is None:
cores = min(4, _cpu_count())
if chains is None:
chains = max(2, cores)
if blas_cores == "auto":
blas_cores = cores
cores = min(cores, chains)
num_blas_cores_per_chain: int | None
joined_blas_limiter: Callable[[], Any]
if blas_cores is None:
joined_blas_limiter = contextlib.nullcontext
num_blas_cores_per_chain = None
elif isinstance(blas_cores, int):
def joined_blas_limiter():
return threadpool_limits(limits=blas_cores)
num_blas_cores_per_chain = blas_cores // cores
else:
raise ValueError(
f"Invalid argument `blas_cores`, must be int, 'auto' or None: {blas_cores}"
)
if random_seed == -1:
random_seed = None
random_seed_list = _get_seeds_per_chain(random_seed, chains)
if not discard_tuned_samples and not return_inferencedata:
warnings.warn(
"Tuning samples will be included in the returned `MultiTrace` object, which can lead to"
" complications in your downstream analysis. Please consider to switch to `InferenceData`:\n"
"`pm.sample(..., return_inferencedata=True)`",
UserWarning,
stacklevel=2,
)
# small trace warning
if draws == 0:
msg = "Tuning was enabled throughout the whole trace."
_log.warning(msg)
elif draws < 100:
msg = f"Only {draws} samples per chain. Reliable r-hat and ESS diagnostics require longer chains for accurate estimate."
_log.warning(msg)
auto_nuts_init = True
if step is not None:
if isinstance(step, CompoundStep):
for method in step.methods:
if isinstance(method, NUTS):
auto_nuts_init = False
elif isinstance(step, NUTS):
auto_nuts_init = False
initial_points = None
step = assign_step_methods(model, step, methods=pm.STEP_METHODS, step_kwargs=kwargs)
if nuts_sampler != "pymc":
if not isinstance(step, NUTS):
raise ValueError(
"Model can not be sampled with NUTS alone. Your model is probably not continuous."
)
with joined_blas_limiter():
return _sample_external_nuts(
sampler=nuts_sampler,
draws=draws,
tune=tune,
chains=chains,
target_accept=kwargs.pop("nuts", {}).get("target_accept", 0.8),
random_seed=random_seed,
initvals=initvals,
model=model,
var_names=var_names,
progressbar=progressbar,
idata_kwargs=idata_kwargs,
compute_convergence_checks=compute_convergence_checks,
nuts_sampler_kwargs=nuts_sampler_kwargs,
**kwargs,
)
if isinstance(step, list):
step = CompoundStep(step)
elif isinstance(step, NUTS) and auto_nuts_init:
if "nuts" in kwargs:
nuts_kwargs = kwargs.pop("nuts")
[kwargs.setdefault(k, v) for k, v in nuts_kwargs.items()]
_log.info("Auto-assigning NUTS sampler...")
with joined_blas_limiter():
initial_points, step = init_nuts(
init=init,
chains=chains,
n_init=n_init,
model=model,
random_seed=random_seed_list,
progressbar=progressbar,
jitter_max_retries=jitter_max_retries,
tune=tune,
initvals=initvals,
**kwargs,
)
if initial_points is None:
# Time to draw/evaluate numeric start points for each chain.
ipfns = make_initial_point_fns_per_chain(
model=model,
overrides=initvals,
jitter_rvs=set(),
chains=chains,
)
initial_points = [ipfn(seed) for ipfn, seed in zip(ipfns, random_seed_list)]
# One final check that shapes and logps at the starting points are okay.
ip: dict[str, np.ndarray]
for ip in initial_points:
model.check_start_vals(ip)
_check_start_shape(model, ip)
if var_names is not None:
trace_vars = [v for v in model.unobserved_RVs if v.name in var_names]
trace_vars = model.replace_rvs_by_values(trace_vars)
assert len(trace_vars) == len(var_names), "Not all var_names were found in the model"
else:
trace_vars = None
# Create trace backends for each chain
run, traces = init_traces(
backend=trace,
chains=chains,
expected_length=draws + tune,
step=step,
trace_vars=trace_vars,
initial_point=ip,
model=model,
)
sample_args = {
# draws is now the total number of draws, including tuning
"draws": draws + tune,
"step": step,
"start": initial_points,
"traces": traces,
"chains": chains,
"tune": tune,
"var_names": var_names,
"progressbar": progressbar,
"progressbar_theme": progressbar_theme,
"model": model,
"cores": cores,
"callback": callback,
"discard_tuned_samples": discard_tuned_samples,
}
parallel_args = {
"mp_ctx": mp_ctx,
"blas_cores": num_blas_cores_per_chain,
}
sample_args.update(kwargs)
has_population_samplers = np.any(
[
isinstance(m, PopulationArrayStepShared)
for m in (step.methods if isinstance(step, CompoundStep) else [step])
]
)
parallel = cores > 1 and chains > 1 and not has_population_samplers
# At some point it was decided that PyMC should not set a global seed by default,
# unless the user specified a seed. This is a symptom of the fact that PyMC samplers
# are built around global seeding. This branch makes sure we maintain this unspoken
# rule. See https://github.com/pymc-devs/pymc/pull/1395.
if parallel:
# For parallel sampling we can pass the list of random seeds directly, as
# global seeding will only be called inside each process
sample_args["random_seed"] = random_seed_list
else:
# We pass None if the original random seed was None. The single core sampler
# methods will only set a global seed when it is not None.
sample_args["random_seed"] = random_seed if random_seed is None else random_seed_list
t_start = time.time()
if parallel:
_log.info(f"Multiprocess sampling ({chains} chains in {cores} jobs)")
_print_step_hierarchy(step)
try:
_mp_sample(**sample_args, **parallel_args)
except pickle.PickleError:
_log.warning("Could not pickle model, sampling singlethreaded.")
_log.debug("Pickling error:", exc_info=True)
parallel = False
except AttributeError as e:
if not str(e).startswith("AttributeError: Can't pickle"):
raise
_log.warning("Could not pickle model, sampling singlethreaded.")
_log.debug("Pickling error:", exc_info=True)
parallel = False
if not parallel:
if has_population_samplers:
_log.info(f"Population sampling ({chains} chains)")
_print_step_hierarchy(step)
with joined_blas_limiter():
_sample_population(
initial_points=initial_points, parallelize=cores > 1, **sample_args
)
else:
_log.info(f"Sequential sampling ({chains} chains in 1 job)")
_print_step_hierarchy(step)
with joined_blas_limiter():
_sample_many(**sample_args)
t_sampling = time.time() - t_start
# Packaging, validating and returning the result was extracted
# into a function to make it easier to test and refactor.
return _sample_return(
run=run,
traces=traces,
tune=tune,
t_sampling=t_sampling,
discard_tuned_samples=discard_tuned_samples,
compute_convergence_checks=compute_convergence_checks,
return_inferencedata=return_inferencedata,
keep_warning_stat=keep_warning_stat,
idata_kwargs=idata_kwargs or {},
model=model,
)
def _sample_return(
*,
run: RunType | None,
traces: Sequence[IBaseTrace],
tune: int,
t_sampling: float,
discard_tuned_samples: bool,
compute_convergence_checks: bool,
return_inferencedata: bool,
keep_warning_stat: bool,
idata_kwargs: dict[str, Any],
model: Model,
) -> InferenceData | MultiTrace:
"""Final step of `pm.sampler` that picks/slices chains,
runs diagnostics and converts to the desired return type."""
# Pick and slice chains to keep the maximum number of samples
if discard_tuned_samples:
traces, length = _choose_chains(traces, tune)
else:
traces, length = _choose_chains(traces, 0)
mtrace = MultiTrace(traces)[:length]
# count the number of tune/draw iterations that happened
# ideally via the "tune" statistic, but not all samplers record it!
if "tune" in mtrace.stat_names:
# Get the tune stat directly from chain 0, sampler 0
stat = mtrace._straces[0].get_sampler_stats("tune", sampler_idx=0)
stat = tuple(stat)
n_tune = stat.count(True)
n_draws = stat.count(False)
else:
# these may be wrong when KeyboardInterrupt happened, but they're better than nothing
n_tune = min(tune, len(mtrace))
n_draws = max(0, len(mtrace) - n_tune)
if discard_tuned_samples:
mtrace = mtrace[n_tune:]
# save metadata in SamplerReport
mtrace.report._n_tune = n_tune
mtrace.report._n_draws = n_draws
mtrace.report._t_sampling = t_sampling
n_chains = len(mtrace.chains)
_log.info(
f'Sampling {n_chains} chain{"s" if n_chains > 1 else ""} for {n_tune:_d} tune and {n_draws:_d} draw iterations '
f"({n_tune*n_chains:_d} + {n_draws*n_chains:_d} draws total) "
f"took {t_sampling:.0f} seconds."
)
idata = None
if compute_convergence_checks or return_inferencedata:
ikwargs: dict[str, Any] = dict(model=model, save_warmup=not discard_tuned_samples)
ikwargs.update(idata_kwargs)
idata = pm.to_inference_data(mtrace, **ikwargs)
if compute_convergence_checks:
warns = run_convergence_checks(idata, model)
mtrace.report._add_warnings(warns)
log_warnings(warns)
if return_inferencedata:
# By default we drop the "warning" stat which contains `SamplerWarning`
# objects that can not be stored with `.to_netcdf()`.
if not keep_warning_stat:
return drop_warning_stat(idata)
return idata
return mtrace
def _check_start_shape(model, start: PointType):
"""Checks that the prior evaluations and initial points have identical shapes.
Parameters
----------
model : pm.Model
The current model on context.
start : dict
The complete dictionary mapping (transformed) variable names to numeric initial values.
"""
e = ""
try:
actual_shapes = model.eval_rv_shapes()
except NotImplementedError as ex:
warnings.warn(f"Unable to validate shapes: {ex.args[0]}", UserWarning)
return
for name, sval in start.items():
ashape = actual_shapes.get(name)
sshape = np.shape(sval)
if ashape != tuple(sshape):
e += f"\nExpected shape {ashape} for var '{name}', got: {sshape}"
if e != "":
raise ValueError(f"Bad shape in start point:{e}")
def _sample_many(
*,
draws: int,
chains: int,
traces: Sequence[IBaseTrace],
start: Sequence[PointType],
random_seed: Sequence[RandomSeed] | None,
step: Step,
callback: SamplingIteratorCallback | None = None,
**kwargs,
):
"""Samples all chains sequentially.
Parameters
----------
draws: int
The number of samples to draw
chains: int
Total number of chains to sample.
start: list
Starting points for each chain
random_seed: list of random seeds, optional
A list of seeds, one for each chain
step: function
Step function
"""
for i in range(chains):
_sample(
draws=draws,
chain=i,
start=start[i],
step=step,
trace=traces[i],
random_seed=None if random_seed is None else random_seed[i],
callback=callback,
**kwargs,
)
return
def _sample(
*,
chain: int,
progressbar: bool,
random_seed: RandomSeed,
start: PointType,
draws: int,
step: Step,
trace: IBaseTrace,
tune: int,
model: Model | None = None,
progressbar_theme: Theme | None = default_progress_theme,
callback=None,
**kwargs,
) -> None:
"""Main iteration for singleprocess sampling.
Multiple step methods are supported via compound step methods.
Parameters
----------
chain : int
Number of the chain that the samples will belong to.
progressbar : bool
Whether or not to display a progress bar in the command line. The bar shows the percentage
of completion, the sampling speed in samples per second (SPS), and the estimated remaining
time until completion ("expected time of arrival"; ETA).
random_seed : single random seed
start : dict
Starting point in parameter space (or partial point)
draws : int
The number of samples to draw
step : function
Step function
trace
A chain backend to record draws and stats.
tune : int
Number of iterations to tune.
model : Model (optional if in ``with`` context)
progressbar_theme : Theme
Optional custom theme for the progress bar.
"""
skip_first = kwargs.get("skip_first", 0)
sampling_gen = _iter_sample(
draws=draws,
step=step,
start=start,
trace=trace,
chain=chain,
tune=tune,
model=model,
random_seed=random_seed,
callback=callback,
)
_pbar_data = {"chain": chain, "divergences": 0}
_desc = "Sampling chain {chain:d}, {divergences:,d} divergences"
progress = CustomProgress(
"[progress.description]{task.description}",
BarColumn(),
"[progress.percentage]{task.percentage:>3.0f}%",
TimeRemainingColumn(),
TextColumn("/"),
TimeElapsedColumn(),
console=Console(theme=progressbar_theme),
disable=not progressbar,
)
with progress:
try:
task = progress.add_task(_desc.format(**_pbar_data), completed=0, total=draws)
for it, diverging in enumerate(sampling_gen):
if it >= skip_first and diverging:
_pbar_data["divergences"] += 1
progress.update(task, description=_desc.format(**_pbar_data), completed=it)
progress.update(
task, description=_desc.format(**_pbar_data), completed=draws, refresh=True
)
except KeyboardInterrupt:
pass
def _iter_sample(
*,
draws: int,
step: Step,
start: PointType,
trace: IBaseTrace,
chain: int = 0,
tune: int = 0,
model: Model | None = None,
random_seed: RandomSeed = None,
callback: SamplingIteratorCallback | None = None,
) -> Iterator[bool]:
"""Generator for sampling one chain. (Used in singleprocess sampling.)
Parameters
----------
draws : int
The number of samples to draw
step : function
Step function
start : dict
Starting point in parameter space (or partial point).
Must contain numeric (transformed) initial values for all (transformed) free variables.
trace
A chain backend to record draws and stats.
chain : int, optional
Chain number used to store sample in backend.
tune : int, optional
Number of iterations to tune (defaults to 0).
model : Model (optional if in ``with`` context)
random_seed : single random seed, optional
Yields
------
diverging : bool
Indicates if the draw is divergent. Only available with some samplers.
"""
model = modelcontext(model)
draws = int(draws)
if draws < 1:
raise ValueError("Argument `draws` must be greater than 0.")
if random_seed is not None:
np.random.seed(random_seed)
point = start
try:
step.tune = bool(tune)
if hasattr(step, "reset_tuning"):
step.reset_tuning()
for i in range(draws):
diverging = False
if i == 0 and hasattr(step, "iter_count"):
step.iter_count = 0
if i == tune:
step.stop_tuning()
point, stats = step.step(point)
trace.record(point, stats)
log_warning_stats(stats)
diverging = i > tune and len(stats) > 0 and (stats[0].get("diverging") is True)
if callback is not None:
callback(
trace=trace,
draw=Draw(chain, i == draws, i, i < tune, stats, point),
)
yield diverging
except KeyboardInterrupt:
trace.close()
raise
except BaseException:
trace.close()
raise
else:
trace.close()
def _mp_sample(
*,
draws: int,
tune: int,
step,
chains: int,
cores: int,
random_seed: Sequence[RandomSeed],
start: Sequence[PointType],
progressbar: bool = True,
progressbar_theme: Theme | None = default_progress_theme,
traces: Sequence[IBaseTrace],
model: Model | None = None,
callback: SamplingIteratorCallback | None = None,
blas_cores: int | None = None,
mp_ctx=None,
**kwargs,
) -> None:
"""Main iteration for multiprocess sampling.
Parameters
----------
draws : int
The number of samples to draw
tune : int
Number of iterations to tune.
step : function
Step function
chains : int
The number of chains to sample.
cores : int
The number of chains to run in parallel.
random_seed : list of random seeds
Random seeds for each chain.
start : list
Starting points for each chain.
Dicts must contain numeric (transformed) initial values for all (transformed) free variables.
progressbar : bool
Whether or not to display a progress bar in the command line.
progressbar_theme : Theme
Optional custom theme for the progress bar.
traces
Recording backends for each chain.
model : Model (optional if in ``with`` context)
callback
A function which gets called for every sample from the trace of a chain. The function is
called with the trace and the current draw and will contain all samples for a single trace.
the ``draw.chain`` argument can be used to determine which of the active chains the sample
is drawn from.
Sampling can be interrupted by throwing a ``KeyboardInterrupt`` in the callback.
"""
import pymc.sampling.parallel as ps
# We did draws += tune in pm.sample
draws -= tune
sampler = ps.ParallelSampler(
draws=draws,
tune=tune,
chains=chains,
cores=cores,
seeds=random_seed,
start_points=start,
step_method=step,
progressbar=progressbar,
progressbar_theme=progressbar_theme,
blas_cores=blas_cores,
mp_ctx=mp_ctx,
)
try:
try:
with sampler:
for draw in sampler:
strace = traces[draw.chain]
strace.record(draw.point, draw.stats)
log_warning_stats(draw.stats)
if draw.is_last:
strace.close()
if callback is not None:
callback(trace=strace, draw=draw)
except ps.ParallelSamplingError as error:
strace = traces[error._chain]
for strace in traces:
strace.close()
raise
except KeyboardInterrupt:
pass
finally:
for strace in traces:
strace.close()
def _init_jitter(
model: Model,
initvals: StartDict | Sequence[StartDict | None] | None,
seeds: Sequence[int] | np.ndarray,
jitter: bool,
jitter_max_retries: int,
) -> list[PointType]:
"""Apply a uniform jitter in [-1, 1] to the test value as starting point in each chain.
``model.check_start_vals`` is used to test whether the jittered starting
values produce a finite log probability. Invalid values are resampled
unless `jitter_max_retries` is achieved, in which case the last sampled
values are returned.
Parameters
----------
jitter: bool
Whether to apply jitter or not.
jitter_max_retries : int
Maximum number of repeated attempts at initializing values (per chain).
Returns
-------
start : ``pymc.model.Point``
Starting point for sampler
"""
ipfns = make_initial_point_fns_per_chain(
model=model,
overrides=initvals,
jitter_rvs=set(model.free_RVs) if jitter else set(),
chains=len(seeds),
)
if not jitter:
return [ipfn(seed) for ipfn, seed in zip(ipfns, seeds)]
initial_points = []
for ipfn, seed in zip(ipfns, seeds):
rng = np.random.RandomState(seed)
for i in range(jitter_max_retries + 1):
point = ipfn(seed)
if i < jitter_max_retries:
try:
model.check_start_vals(point)
except SamplingError:
# Retry with a new seed
seed = rng.randint(2**30, dtype=np.int64)
else:
break
initial_points.append(point)
return initial_points
[docs]
def init_nuts(
*,
init: str = "auto",
chains: int = 1,
n_init: int = 500_000,
model: Model | None = None,
random_seed: RandomSeed = None,
progressbar=True,
jitter_max_retries: int = 10,
tune: int | None = None,
initvals: StartDict | Sequence[StartDict | None] | None = None,
**kwargs,
) -> tuple[Sequence[PointType], NUTS]:
"""Set up the mass matrix initialization for NUTS.
NUTS convergence and sampling speed is extremely dependent on the
choice of mass/scaling matrix. This function implements different
methods for choosing or adapting the mass matrix.
Parameters
----------
init : str
Initialization method to use.
* auto: Choose a default initialization method automatically.
Currently, this is ``jitter+adapt_diag``, but this can change in the future. If you
depend on the exact behaviour, choose an initialization method explicitly.
* adapt_diag: Start with a identity mass matrix and then adapt a diagonal based on the
variance of the tuning samples. All chains use the test value (usually the prior mean)
as starting point.
* jitter+adapt_diag: Same as ``adapt_diag``, but use test value plus a uniform jitter in
[-1, 1] as starting point in each chain.
* jitter+adapt_diag_grad:
An experimental initialization method that uses information from gradients and samples
during tuning.
* advi+adapt_diag: Run ADVI and then adapt the resulting diagonal mass matrix based on the
sample variance of the tuning samples.
* advi: Run ADVI to estimate posterior mean and diagonal mass matrix.
* advi_map: Initialize ADVI with MAP and use MAP as starting point.
* map: Use the MAP as starting point. This is discouraged.
* adapt_full: Adapt a dense mass matrix using the sample covariances. All chains use the
test value (usually the prior mean) as starting point.
* jitter+adapt_full: Same as ``adapt_full``, but use test value plus a uniform jitter in
[-1, 1] as starting point in each chain.
chains : int
Number of jobs to start.
initvals : optional, dict or list of dicts
Dict or list of dicts with initial values to use instead of the defaults from `Model.initial_values`.
The keys should be names of transformed random variables.
n_init : int
Number of iterations of initializer. Only works for 'ADVI' init methods.
model : Model (optional if in ``with`` context)
random_seed : int, array-like of int, RandomState or Generator, optional
Seed for the random number generator.
progressbar : bool
Whether or not to display a progressbar for advi sampling.
jitter_max_retries : int
Maximum number of repeated attempts (per chain) at creating an initial matrix with uniform jitter
that yields a finite probability. This applies to ``jitter+adapt_diag`` and ``jitter+adapt_full``
init methods.
**kwargs : keyword arguments
Extra keyword arguments are forwarded to pymc.NUTS.
Returns
-------
initial_points : list
Starting points for each chain.
nuts_sampler : ``pymc.step_methods.NUTS``
Instantiated and initialized NUTS sampler object
"""
model = modelcontext(model)
vars = kwargs.get("vars", model.value_vars)
if set(vars) != set(model.value_vars):
raise ValueError("Must use init_nuts on all variables of a model.")
if not all_continuous(vars):
raise ValueError("init_nuts can only be used for models with continuous variables.")
if not isinstance(init, str):
raise TypeError("init must be a string.")
init = init.lower()
if init == "auto":
init = "jitter+adapt_diag"
random_seed_list = _get_seeds_per_chain(random_seed, chains)
_log.info(f"Initializing NUTS using {init}...")
cb = [
pm.callbacks.CheckParametersConvergence(tolerance=1e-2, diff="absolute"),
pm.callbacks.CheckParametersConvergence(tolerance=1e-2, diff="relative"),
]
initial_points = _init_jitter(
model,
initvals,
seeds=random_seed_list,
jitter="jitter" in init,
jitter_max_retries=jitter_max_retries,
)
apoints = [DictToArrayBijection.map(point) for point in initial_points]
apoints_data = [apoint.data for apoint in apoints]
potential: quadpotential.QuadPotential
if init == "adapt_diag":
mean = np.mean(apoints_data, axis=0)
var = np.ones_like(mean)
n = len(var)
potential = quadpotential.QuadPotentialDiagAdapt(n, mean, var, 10)
elif init == "jitter+adapt_diag":
mean = np.mean(apoints_data, axis=0)
var = np.ones_like(mean)
n = len(var)
potential = quadpotential.QuadPotentialDiagAdapt(n, mean, var, 10)
elif init == "jitter+adapt_diag_grad":
mean = np.mean(apoints_data, axis=0)
var = np.ones_like(mean)
n = len(var)
if tune is not None and tune > 250:
stop_adaptation = tune - 50
else:
stop_adaptation = None
potential = quadpotential.QuadPotentialDiagAdaptExp(
n,
mean,
alpha=0.02,
use_grads=True,
stop_adaptation=stop_adaptation,
)
elif init == "advi+adapt_diag":
approx = pm.fit(
random_seed=random_seed_list[0],
n=n_init,
method="advi",
model=model,
callbacks=cb,
progressbar=progressbar,
obj_optimizer=pm.adagrad_window,
)
approx_sample = approx.sample(
draws=chains, random_seed=random_seed_list[0], return_inferencedata=False
)
initial_points = [approx_sample[i] for i in range(chains)]
std_apoint = approx.std.eval()
cov = std_apoint**2
mean = approx.mean.get_value()
weight = 50
n = len(cov)
potential = quadpotential.QuadPotentialDiagAdapt(n, mean, cov, weight)
elif init == "advi":
approx = pm.fit(
random_seed=random_seed_list[0],
n=n_init,
method="advi",
model=model,
callbacks=cb,
progressbar=progressbar,
obj_optimizer=pm.adagrad_window,
)
approx_sample = approx.sample(
draws=chains, random_seed=random_seed_list[0], return_inferencedata=False
)
initial_points = [approx_sample[i] for i in range(chains)]
cov = approx.std.eval() ** 2
potential = quadpotential.QuadPotentialDiag(cov)
elif init == "advi_map":
start = pm.find_MAP(include_transformed=True, seed=random_seed_list[0])
approx = pm.MeanField(model=model, start=start)
pm.fit(
random_seed=random_seed_list[0],
n=n_init,
method=pm.KLqp(approx),
callbacks=cb,
progressbar=progressbar,
obj_optimizer=pm.adagrad_window,
)
approx_sample = approx.sample(
draws=chains, random_seed=random_seed_list[0], return_inferencedata=False
)
initial_points = [approx_sample[i] for i in range(chains)]
cov = approx.std.eval() ** 2
potential = quadpotential.QuadPotentialDiag(cov)
elif init == "map":
start = pm.find_MAP(include_transformed=True, seed=random_seed_list[0])
cov = -pm.find_hessian(point=start, negate_output=False)
initial_points = [start] * chains
potential = quadpotential.QuadPotentialFull(cov)
elif init == "adapt_full":
mean = np.mean(apoints_data * chains, axis=0)
initial_point = initial_points[0]
initial_point_model_size = sum(initial_point[n.name].size for n in model.value_vars)
cov = np.eye(initial_point_model_size)
potential = quadpotential.QuadPotentialFullAdapt(initial_point_model_size, mean, cov, 10)
elif init == "jitter+adapt_full":
mean = np.mean(apoints_data, axis=0)
initial_point = initial_points[0]
initial_point_model_size = sum(initial_point[n.name].size for n in model.value_vars)
cov = np.eye(initial_point_model_size)
potential = quadpotential.QuadPotentialFullAdapt(initial_point_model_size, mean, cov, 10)
else:
raise ValueError(f"Unknown initializer: {init}.")
step = pm.NUTS(potential=potential, model=model, **kwargs)
# Filter deterministics from initial_points
value_var_names = [var.name for var in model.value_vars]
initial_points = [
{k: v for k, v in initial_point.items() if k in value_var_names}
for initial_point in initial_points
]
return initial_points, step